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1. The Three Musketeers on Control, Model Uncertainty and Monetary Policy

As a former Federal Reserve Board economist it is a great pleasure for me to contribute
to this "Festschrift’ honoring the achievements of FRB researchers Dale Henderson, Richard
Porter and Peter Tinsley by commenting on research in their tradition, in this case a
contribution by Lars Hansen and Thomas Sargent, two of the leading macroeconomists
of our time. Soon after I joined the Fed, Dick Porter, at the time the boss of my boss,
approached me not to assign work but to discuss potential applications of my thesis research
on learning and control to monetary policy. One of his first remarks was "You should also
talk to Peter Tinsley about this’ and then introduced me to Peter. Soon afterwards I also
discussed my findings with Dale Henderson.

I quickly realized that these three experienced researchers were unique in their ability



and willingness to provide advice and guidance to a young economist embarking on his
first research papers. Many helpful and sometimes intense discussions followed in the five
years I spent at the Fed. Thus, even though Dale, Dick and Peter worked in different
divisions, did not co-author papers and did not seem especially close to each other, the
picture that immediately came to my mind when preparing this discussion was the one of
the three musketeers. Just like the three musketeers of Alexandre Dumas—Athos, Portos
and Aramis—were renowned for their superior sword-fighting ability in the service of his
majesty the King of France, Dick, Dale and Peter stood out at the Fed as masters of the
weapons of the researcher—intellect, curiosity and imagination—and put them to good use
in the service of science and, of course, the Chairman and the Governors. So I am not
surprised that their achievements are honored jointly in this Festschrift and I was pleased
to see Jeff Fuhrer pick up on Dumas at the conference and suggest a D’Artagnan for our
three musketeers in the late George Moore.

The paper by Hansen and Sargent on ’Certainty Equivalence and Model Uncertainty’
is well placed in this Festschrift. Hansen and Sargent elegantly show that the separation
principle, which applies to stochastic control problems with quadratic objectives and linear
transition laws, can also be extended to robust control problems of a linear-quadratic nature.
In stochastic control this principle, which is often referred to as ’certainty-equivalence’,
allows the separation of control and estimation (or filtering). In other words, the stochastic
control problem with unknown realizations (from known probability functions) can be solved
by optimizing first under perfect foresight and then replacing unknown future values with
optimal forecasts. Robust control at first glance seems to elude such simplicity. A robust
controller is concerned with model misspecfication and considers alternative models without
assigning probabilities like a Bayesian decision maker. Robustness is achieved by acting

as if nature would choose the worst of the available models and guarding against that



possibility. Hansen and Sargent show that a version of the separation principle prevails
in a linear-quadratic version of this game. The first step remains to optimize under the
assumption that future values are perfectly foreseen. In the estimation step, however, the
robust controller distorts beliefs relative to the approximating model to achieve robustness.
The distorted law of motion needed to reveal this version of certainty-equivalence arises
when nature acts as Stackelberg leader.

The issues Hansen and Sargent touch upon in this paper resonate with the work of
Tinsley, Henderson and Porter. Linear-quadratic stochastic control has been used to
model economic phenomena for almost fifty years. It has been widely applied to study
the behavior of forward-looking economic agents and continues to play an important
role in academic research as well as practical monetary policy analysis. For example,
central bank staff now routinely compute optimal policy rules for linear macroeconometric
models with rational expectations under quadratic policy objectives and make use of
such rules as benchmarks for policy prescriptions. This progress owes much to the three
FRB musketeers. For example, Tinsley and his co-authors were frontrunners in applying
stochastic control and filtering techniques to the analysis of monetary policy (Kalchbrenner,
Tinsley and others 1975, 1976, 1977). They introduced feedback control to the design
of monetary policy and carefully analysed how all available information may be filtered
for use in policy design. Aware of the challenges of practical policymaking, our three
honorees were concerned early on with issues of risk, parameter and model uncertainty.
Dale Henderson, for example, already investigated optimal macroeconomic policy under
conditions of risk in his very first published paper, (Henderson and Turnovsky 1972). At
the Fed Tinsley and von zur Muehlen (1981) proposed a maximum probability approach to
short-run policy to address key uncertainties. It is not surprising that in this stimulating

environment the potential benefits of robust control under model uncertainty were already



introduced to monetary policy by von zur Muehlen (1982) much before its recent gain in
prominence in macroeconomics. The concern for robustness of policy strategies in the face
of likely model specification was also behind the focus on simple rules for policy. In this
context it is worth pointing out that Henderson extensively investigated the value of simple
interest rate rules, now typically referred to as Taylor rules, in a paper published in the
same conference volume as Taylor’s well-known contribution, (Henderson and McKibbin
(1993)). The most-cited alternative to simple interest rate rules are simple money growth
rules. To date, proponents of this approach still tend to rely on the well-known ’P-star’

model developed by Hallman, Porter and Small (1991).

2. A Separation Principle for Robust Control

This paper is part of a larger research effort by Hansen and Sargent to introduce ro-
bust behavior modelled in terms of robust control as a behavioral assumption in economics.
This research agenda has the potential to explain economic behavior by positing a pref-
erence for robustness when the standard expected utility maximization paradigm fails to
produce explanations. The upcoming monograph ’Misspecification in Recursive Macroe-
conomic Theory’ by Hansen and Sargent promises to become an influential piece of work
providing a highly useful toolbox for further research in this area. In the past, both authors
have also contributed importantly to macroeconomics by popularizing the use of linear-
quadratic stochastic control techniques. For those techniques, the certainty-equivalence
principle implies a very useful simplification of dynamic stochastic analysis. Optimal rules
can be derived in two steps where step one is to optimize for a given set of expecations
(perfect foresight) and step two is to form expectations optimally. Thus, linear-quadratic

stochastic control constitutes an easy-to-use approach for analyzing optimizing economic



behavior in the presence of uncertainty. Divergences between empirical implications of
linear-quadratic model economies and real-world economic data identify important starting
points for further research.

The present paper focusses on the extension of the certainty-equivalence principle from
stochastic to robust control of linear dynamic economies with quadratic objective. To review
the contribution and possible limitations of this paper I follow the notation of Hansen and
Sargent (HS) and use y; to denote the vector of state variables with an exogenous component

zt, an endogenous component x; and the following transition laws:

241 = fa, €41) (1)

Tt41 = g(fﬁt, Zuut) (2)

€r+1 refers to an i.i.d. sequence of random vectors with mean-zero normal distribution. f
and g are known linear functions. The decision maker chooses the control variable u; to
maximize the expected value of the quadratic objective function r:
0o
B[y 8y, u)ly’] 3)
t=0
where 3 € (0,1). It is well known that the solution under certainty about future variables
is a linear rule. Certainty equivalence implies that the deterministic solution is identical
to the solution to the stochastic control problem with future variables replaced by their
rational forecasts. The optimal rule then feeds back on initial information on x; and z,
ur = h(xy, 2¢).
Hansen and Sargent’s robust controller fears that (1) is misspecified and measures the

difference from the true law of motion for the uncertain state z by the distortions w,

Zer1 = f(2e, €41 + wig1). (4)



An upper bound on this difference is defined by 79 according to:

[e.9]
ED ﬁtw£+1wt+1)yo < o] (5)
t=0
where E concerns the distribution generated by the distorted law of motion (4). A robust

decision rule is derived from the Markov perfect equilibrium of the following two-player

Zero-sum gaime:

min max E[Z B (ye, ur) + 0Bw,, wisr }] ‘yo (6)

Wi to t=0
HS call this a multiplier problem. In the manuscript of their upcoming mono-
graph they discuss the equivalence of the multiplier problem to the min-max problem
miny, maxy, B[22, 6 (ys, ur)] ‘yo subject to the constraint (5). They call the latter spec-
ification a constraint problem.

In the Markov perfect equilibrium the players choose sequentially and simultaneously
each period, taking the other player’s decision rule as given. The distortions w feed back
on the endogenous state x and require the maximizing player to design a rule that accounts
for the possibility of mis-specified dynamics. The Markov perfect equilibrium is defined
by the decision rules of the two players, u; = H (¢, z¢) and wey; = Wy, 2¢), with H(.)
representing the robust rule. This rule promises a lower maximal rate at which the objective
can deteriorate with increases in misspecification as measured by the term wj  wi41.

From the Markov perfect equilibrium it is not apparent that a version of the separation
principle applies to this game. An important contribution of the HS paper in this volume
is to show that the separation principle applies to the Stackelberg version of this game.
Due to the zero-sum nature of this game the solutions under the Stackelberg and Markov
timing protocols are identical. In the Stackelberg case, nature acts as Stackelberg leader
and chooses a plan for setting the future w’s taking into account the best response of the

robust controller, who chooses the u's sequentially and regards the w’s as an exogenous



process. Thus, at time zero the Stackelberg leader determines transition laws for the w’s
and a larger set of state variables that in turn depend on the best response of the robust
controller. Aware of these transition laws (albeit not the future outcomes of these variables)
the robust controller can use them for forecasting. These forecasts are distorted relative to
the optimal forecasts in the stochastic control problem. HS go on to show that the Stack-
elberg equilibrium exhibits certainty equivalence and the robust rule can be determined by
two separate steps: first, compute the optimal rule for the non-stochastic problem where the
future states z are known; secondly, derive expectations of future states from the distorted
transition laws implied by the Stackelberg leader’s plan and plug them in the deterministic
decision rule.

This finding produces several benefits. It provides a new perspective on robust
decision making that is particularly appealing for economics given the importance of
linear-quadratic models and the separation priniple in standard economic analysis. Fur-
thermore, it allows to use recursive methods for computing robust rules and it provides
a model for rationalizing the actions of a robust controller from a Bayesian perspective.
Hansen and Sargent deliver powerful tools for analyzing misspecification and exploring
the implications of a preference for robustness. For the remainder of this comment I will

discuss some limitations of HS’ approach to model uncertainty and robustness in more detail.

3. Limitations of HS Robust Control

3.1. Limited Degree of Model Uncertainty or “When Certainty-FEquivalence Fails”

The degree of model uncertainty considered by HS in this paper remains rather limited.
The transition laws f(.) and g(.) for the exogenous and endogenous state variables are

assumed to be known to the decision maker. Taking the case of a linear transition law g(.) =



G12¢+9g22t+g3ut, this means the parameters g; ;—¢1 2 3} are treated as known. g3, for example,
measures the effect of the decisions u on state x, that is policy effectiveness. Assuming
knowledge of such parameters seems rather unattractive when the objective is to analyze
the implications of uncertainty on economic decision making. Parameter uncertainty has
been studied extensively in stochastic control in the context of optimal monetary policy
as well as consumption and investment dynamics. It is understood that the separation
principle for stochastic control will fail under multiplicative parameter uncertainty even
with linear models and quadratic objective.

Of course, one can consider a min-max game with uncertainty concerning model struc-
ture. In such a game the robust controller tries to guard against averse outcomes regarding
nature’s choice of parameters governing the transition laws g and f. For example, the robust
controller may suspect distortions concerning the policy effectiveness parameter gz + wgy3
and derive a robust rule. The robustness of monetary policy in the presence of structured
model uncertainty has been studied by Onatski and Stock (2000), Giannoni (2000), Tetlow
and von zur Muehlen (2001) and Zakovic, Rustem and Wieland (2002, 2004a, 2004b). The
conclusions differ somewhat across studies. However, Tetlow and von zur Muehlen (2001)
as well as Zakovic et al. (2004b) find that a policy that is robust to structured model
uncertainty implies a more cautious response to inflation and output fluctuations than in
the absence of uncertainty.

While HS focus on fully optimal decision rules, the above authors focus on simple
rules that respond to a subset of state variables. It is known from stochastic control
that certainty-equivalence fails with simple rules. Concerns about model uncertainty
have been an important motivation for the popularity of simple rules in the practice of
policymaking. The history of monetary policy has long been characterized by debates

regarding simple money growth and interest rate rules due to concerns regarding the



dynamics of the economy including long and variable lags in the monetary transmission
process. The important contributions of Hallman, Porter and Small and Henderson and
McKibbin to this debate have already been mentioned above. It is of particular interest for
policy applications to constrain mini-max analysis in this manner. In this case, the robust
controller commits to following a simple rule and then chooses the response parameters of

that rule according to a min-max criterion.

3.2. Limited Degree of Robust Behavior

In the present paper HS focus on the multiplier problem defined by equation (6). In this
problem the parameter 6 plays a key role in determining the extent of robust behavior. As
f goes to infinity the minimizing player, i.e. nature, will set the distortions w equal to zero.
Thus, the preference for robustness disappears. As 6 goes towards zero there is a positive
lower value 8, which HS call a breakdown point. Beyond this point it is fruitless to seek more
robustness within this framework because nature is sufficiently unconstrained so that she
can push the criterion function to —oo despite the best efforts of the robust controller. HS
provide an interpretation of € in terms of risk-sensitive preferences as discussed by Whittle
(1990). In the forthcoming monograph HS carefully examine the link between 6 in the
multiplier problem and the upper bound # in the constraint problem and derive conditions
under which both games result in the identical equilibrium.

Clearly, the lower bound 6 or the upper bound 77 are key parameters in specifiying the
degree of robustness. The approach developed in this regard in the upcoming monograph
of HS is impressive. Nevertheless, it seems to me that for many applications, including
monetary policy, other specifications of robust preferences may seem more intuitive and

more flexible to use. For example, borrowing from Rustem and Howe (2002) an alternative



approach is to solve the following min-max problem with box constraints:

M=

min max (Y, u, wy),
w u

~+
Il
o

s.t.

[S

t S Wt S wta (7)

and  transition law for y;

The box constraints on w can be asymmetric and time varying. Thus, they offer highest
flexibility in specifying the worst cases a policymaker would like to consider. To derive the
robust policy no assumptions regarding the formation of expectations and measurability
are needed. Furthermore, the policy derived in this manner can guarantee a lower bound
on the gain (or upper bound on the loss) across the whole range of distortions w to be
considered. Thus, it provides full insurance for this range. If desired one can constrain
the flexibility offered by the box constraints by considering the cost of such insurance. An
intuitive measure of this cost would be the implied loss in expected performance that is
incurred compared to the optimal stochastic control rule. A policymaker’s willingness to
sacrifice expected performance in order to purchase insurance cover for a certain range of
bad outcomes would determine the desired range to be covered. Zakovic et al. (2004b)
provide an example of this type of analysis for a simple model of monetary policy.

As shown by Rustem and Howe (2002) the above min-max problem allows multiple
solutions. Their algorithm guarantees cover across all solutions. Multiple solutions may
arise if the objective is concave in w. If the objective is convex in w and concave in u it has
the saddle point property. The role of the parameter 6 in HS is to convexify the objective

in the w dimension.

3.3. Learning and The Failure of the Separation Principle

10



Hansen and Sargent treat model uncertainty as given and assume that nothing can be
learned. Such an assumption seems rather unnatural when considering uncertainty regard-
ing model structure such as the parameters of the transition laws g(.) and f(.) discussed
above. In practice, a decision maker will attempt to learn more about parameters that
govern the impact of his actions on performance. To illustrate this incentive to learn I turn
to the linear-quadratic permanent income model of consumption used by HS for illustrative
purposes. They consider a consumer who receives the exogenous endowment process zy,
which follows a first-order autoregression. The consumer needs to allocate the endowment

between consumption ¢; and savings x; and wants to maximize

o
_EO Zﬁt(ct _21)2756 (07 1)
t=0
s.t. Ti41 + ¢ = Ry + 204 (8)

and  zop41 = pa(l — p) + prar + ca(€r41 + wegr)

The constant z; is a bliss level of consumption. R > 1 is a time-invariant gross rate of
return on financial assets z; held at the beginning of period ¢, and |p| < 1 describes the
persistence of the endowment process. w1 is a distortion to the mean of the endowment
process that represents possible model misspecification. HS show how concern over model-
misspecification introduces a type of precautionary savings.

HS assume that the effect of consumption on utility is known with certainty. At first
glance this assumption may seem appropriate. After all, one should know what one likes
even if one may never be sure how to afford it. On second thought however, one could
think of many examples where the impact of consumption on utility is uncertain. To name
one, there exist quite different views on the impact of cigarette consumption on health and
thus on utility. Such uncertainty arises with much of what we consume and quite often

with regard to the quantity of consumption. To capture this uncertainty one could add
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an additional state xo to the above utility function to measure sickness or ill health and a

corresponding transition law relating xs to the quantity of consumption:

Top = Q12241 + Pact + €141 9)

Here the impact of consumption on health status is measured by the parameter ¢o. A
consumer concerned with the relationship between consumption and health will attempt to
learn about ¢o. One approach would be to vary consumption and thereby improve estimates
of this parameter.

Combining learning about structured uncertainty with worst-case analysis is an un-
explored area which deserves attention. In the area of stochastic control there exists a
literature on learning with regard to unknown parameters. In fact, the above example for
health and consumption is reminiscent of the seminal contribution of Grossman, Kihlstrom
and Mirman (1977) on learning and consumption. It is well known that the separation
principle fails for such learning problems and that control and estimation have to be ad-
dressed jointly. As a result, analytical solutions of optimal decision rules are typically not
available and theoretical research has largely focused on long-run asymptotic behavior of
beliefs. While quantitative approaches to stochastic control with learning (also called adap-
tive control) are more promising, the involved computational problems are complex due to
the presence of nonconvexities (see for example Amman and Kendrick (IER 1995)). For this
reason, optimal learning has not yet been widely applied. However, by now there has been
sufficient progress concerning computer speed and numerical methods to render a class of
learning problems that is general enough for interesting applications readily computable.

I will conclude my comment with an advertisement intended to encourage further appli-
cation. I will present a generic learning and control problem that can be solved with numer-

ical dynamic programming methods in a few minutes on a standard laptop. This problem
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has been analyzed in detail by Beck and Wieland (2002). The numerical algorithm is avail-
able in Fortran code from the following website: www.volkerwieland.com/software.htm.

The decision maker is faced with the following linear stochastic process:

Ty =x4 1+ ¢up + €  wheree ~ N(0,0) (10)

Beliefs regarding the unknown parameter ¢ are summarized by the mean p; and the variance
v;. Given a choice for the control u; and a realization of the shock €; a new observation x;

becomes available and the decision maker updates his beliefs regarding ¢ according to

p = o1+ vt (w) F (2 — 21 + proiu) (11)
vy = v — v (ue) FH (ug) v
where F = (up)ve—1(ug) + o.

The decision maker then maximizes the following objective

Max
U

E [i g (_(xt - 55*)2) | ($07u07p07U0)] (12)
t=0

s.t. transition laws for z¢, p; and v,

There are three state variables, x¢, p; and v;. The transition laws for the beliefs p; and
v; are nonlinear. Consequently, the separation principle does not apply. This problem can
be solved by numerical dynamic programming techniques which are subject to the curse of
dimensionality. Computation time will depend on the number of grid points chosen for the
three state variables and the Gaussian quadrature with respect to the random shock e.
For this example, the grid has 16 points for p, 21 for v and 26 for . Expectations
with respect to the normally distributed random variable are compute by means of 15 point

Gaussian quadrature. The algorithm is coded in FORTRAN and executed on a laptop with
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Mobile Pentium III 1000 MHZ. Convergence is achieved in less than 8 minutes, that is, less
time than the presentation of this comment at the conference. The implied optimal decision
rule is reported in Figure 1, which contains 16 panels. Each panel shows the optimal rule
(dotted line) for u as a function of the state x for a given belief (p, v). Each dot corresponds
to a grid point. Moving from left to right the panels are associated with greater uncertainty
as measured by the variance v. Moving from top to bottom the panels are associated
with greater expected values p. Policies are rather smoothly approximated except for an
occasional discontinuity at * = 0. The figure compares the optimal rule under learning
to a certainty-equivalent rule (solid lines) that disregards uncertainty. For low degrees of
uncertainty or for medium to large deviations of x from zero the optimal rule implies less
responsiveness of the control u to deviations of x than the certainty-equivalent rule. In other
words, parameter uncertainty and learning induce a precautionary motive to decisions. For
high degrees of uncertainty and very small deviations of the state x from the target value of
zero however, the optimal rule implies a higher responsiveness than the certainty-equivalent
rule and at zero even active perturbations. At those points learning introduces a degree of

experimentation in order to improve information regarding the unknown parameter.
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FOOTNOTES
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Fig. 1. Approximating an Optimal Learning Rule.
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