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Abstract
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on inflation. An important source of uncertainty is the relationship between inflation and unem-
ployment. This paper studies the optimal monetary policy in the presence of uncertainty about
the natural unemployment rate, the short-run inflation-unemployment tradeoff and the degree of
inflation persistence in a simple macroeconomic model that incorporates rational learning by the
central bank as well as market participants. Two conflicting motives drive the optimal policy. In
the static version of the model, uncertainty provides a motive for the policymaker to move more
cautiously than she would if she knew the true parameters. In the dynamic version, uncertainty
also motivates an element of experimentation in policy. The optimal policy, which balances the
cautionary and activist motives, is computed using empirical estimates of Phillips curve uncertainty
as a benchmark. The effect due to experimentation is of quantitative relevance for moderate to high
degrees of uncertainty. However, gradual inflation stabilization typically remains optimal, that is,
the optimal policy response to inflation is still less aggressive than a policy that disregards parameter
uncertainty. Exceptions occur when uncertainty is very high and inflation close to target.
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1 Introduction

A number of central banks of industrialized countries have committed themselves to an

explicit inflation targeting strategy, and such a strategy has also been recommended for

the European Central Bank and the U.S. Federal Reserve System. In implementing this

strategy central banks are faced with considerable uncertainty concerning the exact effect

of their principal instrument, the short-term nominal interest rate, on inflation.1 A par-

ticularly important and much discussed source of uncertainty regarding the transmission

of monetary policy to inflation is the relationship between unemployment and inflation,

that is, the Phillips curve. In implementing policy, central banks have to rely on empir-

ical estimates of the natural unemployment rate (or NAIRU),2 the slope of the short-run

inflation-unemployment tradeoff and the degree of inflation persistence. Estimates of these

parameters have changed over time and their precision is the subject of a continuing active

debate. Fuhrer (1995), for example, states that “the Phillips curve is alive and well” as

an empirical relationship in the United States economy, while Staiger, Stock and Watson

(1997a, 1997b, 2002) emphasize that a typical 95% confidence interval for the natural rate

is about 2.5 percentage points wide.3 Of course, the width of this confidence interval is

closely related to the standard error of the slope of the short-run Phillips curve—most

clearly in a linear framework, where estimates of the natural rate are obtained from the

ratio of intercept and slope.

In general, a policy that would be optimal if the parameters of the inflation-

unemployment relationship were known with certainty will be suboptimal once the uncer-

tainty associated with these parameters is taken into account. In this paper, I characterize

the optimal policy in the presence of uncertainty about the natural unemployment rate,

the short-run inflation-unemployment tradeoff and the degree of inflation persistence in the
1As a result, inflation-targeting central banks such as the Bank of England and the Sveriges Riksbank

have given the discussion of inflation uncertainty center stage in their inflation reports.
2An acronym for non-accelerating inflation rate of unemployment.
3For the recent debate on the U.S. economy, see also Gordon (1997), Blanchard and Katz (1997), Akerlof,

Dickens and Perry (1996) and Phelps and Zoega (1997). There also exists a large literature on Phillips curves
in other countries; see for example Debelle and Laxton (1997) and others.
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Phillips curve. Two conflicting motives drive the optimal policy. In the static version of

the model, Phillips curve uncertainty provides a motive for the policymaker to move more

cautiously than she would if she knew all the parameter values. In the dynamic version

with learning by the central bank and private sector agents, uncertainty also motivates an

element of experimentation in policy.

Analysis of the motive for cautionary policy due to multiplicative parameter uncertainty

goes back to Brainard (1967) and has been used to justify a gradualist approach to monetary

policy. For example, Alan Blinder (1995, p.13), when he was vice-chairman of the Board of

Governors, argued that “a little stodginess at the central bank is entirely appropriate”, and

proposed in his Marshall lectures that “central banks should calculate the change in policy

required to get it right and then do less”.4 However, there are a number of reasons to believe

that such a Brainard-style analysis overstates the case for gradualism. For example, Caplin

and Leahy (1996) show that in a game between a policymaker who attempts to stimulate

the economy and potential investors, a cautious policy move may be ineffectual because

investors anticipate lower interest rates in the future. Alternatively, proponents of robust

control in monetary policy5 have argued that worst-case outcomes may best be prevented by

following policy rules that are rather aggressive in responding to inflation deviations from

target. A further reason, investigated in this paper, is that a more aggressive policy rule

may generate more information, which would improve the precision of future estimates and

thereby future policy performance. Policymakers have noted this link between policy and

learning. For example, Stiglitz (1997), when Chairman of the Council of Economic Advisers,

recognized that “a fuller discussion (of NAIRU uncertainty) would take into account factors

such as costs of adjustment and of variability in output and unemployment, and dynamic

learning effects”, and then asked the question: “Are there policies that can affect the degree

of uncertainty about the value of the NAIRU or of policy tradeoffs?”

The tradeoff between current stabilization and exploration for the sake of better control
4See also Blinder (1998) for a discussion of this strategy.
5See for example Sargent (1999a) and Hansen and Sargent (2001).
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in the future has been the focus of a theoretical as well as a computational literature

on optimal learning.6 Recent applications to monetary policy under uncertainty include

Bertocci and Spagat (1993), Balvers and Cosimano (1994), Wieland (2000b), Ellison and

Valla (2001) and Yetman (2003). Analytical results concerning optimal policy are largely

absent from the literature and numerical results are rare, because of the nonlinear nature

of the dynamic learning problem. Among these studies, Wieland (2000b) analyzes the

most general learning problem—a linear regression with two unknown parameters—and

computes the optimal policy numerically.7 Using this approximation Wieland (2000b) then

concentrates on quantifying the likelihood of incomplete learning.8 The problem studied in

the present paper is further complicated by the presence of a lag as well as a forward-looking

expectation of the dependent variable. Contrary to the model in Wieland (2000b), the model

in the present paper exhibits complete learning of the true values of constant parameters,

because the central bank’s continued efforts to stabilize the economy following inflationary

shocks generate sufficient information about the inflation-unemployment tradeoff in the long

run. Therefore, this paper concentrates instead on quantifying the extent of experimentation

and gradualism implied by alternative policies for an empirically plausible range of prior

beliefs.

This paper makes the following contributions. First, extending Brainard’s original anal-

ysis, I derive the Brainard-style cautionary policy rule in the presence of forward-looking
6One part of the literature focused primarily on the asymptotic properties of beliefs and actions (cf.

Taylor (1974), Anderson and Taylor (1976), Easley and Kiefer (1988), Kiefer and Nyarko (1989) and Aghion
et al. (1991)), while the other part focused on characterizing optimal decision rules (cf. Prescott (1972),
Kendrick (1981), Kendrick (1982), Mizrach (1991), Amman and Kendrick (1995), Keller and Rady (1999)
and Wieland (2000a)).

7Ellison and Valla (2001) study discretionary monetary policy with uncertainty about the slope of the
Phillips curve, but they only consider a very stylized learning problem with two possible parameter values
similar to the illustrative example in Wieland (2000a). Yetman (2003) revisits the model of Wieland (1998)
considering alternative degrees of inflation persistence, but he only studies a simplified one-period learning
problem.

8Asymptotic properties of beliefs and policies in this framework have been studied by Easley and Kiefer
(1988) and Kiefer and Nyarko (1989), who have shown that incomplete learning may occur. Kasa (1999)
also discusses the possibility of incomplete learning by a central bank. Wieland (2000b) has evaluated the
speed of learning under alternative policies, as well as the frequency with which a persistent bias in money
growth and inflation may arise due to such self-reinforcing incorrect beliefs subsequent a structural change
such as German unification.
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behavior by market participants. I focus on the case of an inflation-targeting central bank

that commits to a specific interest rate rule in the face of uncertainty about the parameters

of the Phillips curve. The cautionary rule represents the optimal policy under commitment

in the static version of the model, where the central bank only cares about current per-

formance and disregards dynamic learning effects. I find that the cautionary rule implies

gradualism, that is, policy responds to inflationary or disinflationary shocks such that infla-

tion gradually returns to target and policy remains tight or expansive for several periods.

Second, the paper presents numerical results concerning the optimal policy in a dynamic

model with rational learning by the central bank.9 Using empirical estimates of the Phillips

curve with adaptive expectations by Fuhrer (1995) and Staiger, Stock and Watson (2002) as

a benchmark, I quantify the optimal degree of gradualism and experimentation. I find that

the optimal policy incorporates a quantitatively significant degree of experimentation—

meaning a more aggressive policy response than under cautionary Brainard-style policy.

However, the optimal policy typically remains less aggressive than a certainty-equivalent

policy that completely disregards parameter uncertainty. Thus, in most cases the recom-

mendation for gradualist policymaking under parameter uncertainty survives in the dynamic

model with learning. Only when uncertainty is very high and inflation close to target does

the optimal policy imply a more aggressive response than a policy that disregards parameter

uncertainty.

Third, the paper investigates the influence of forward-looking expectations formation

and rational learning by market participants on optimal central bank policy. The qualitative

conclusions remain the same under rational learning as under adaptive expectations. How-

ever, the optimal extent of experimentation is smaller, because forward-looking behavior by

market participants introduces an expectations channel of monetary policy transmission.

Fourth, the policy rules derived in this paper are directly comparable to Taylor-style

interest rate rules that have been studied extensively in the recent literature on monetary
9Boundedly rational learning by central banks is studied by Sims (1988) and Sargent (1999b).
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policy.10 This literature has focused on evaluating the performance of monetary policy rules

in different macroeconometric models under the assumption that all parameters are known

with certainty. Here, I show how the response coefficients of such a policy rule need to be

adjusted in the presence of uncertainty about the relationship between unemployment and

inflation.

The next section documents empirical estimates of the Phillips curve from Fuhrer (1995)

and Staiger et al. (2002) and introduces a theoretical specification to be used in the sub-

sequent policy analysis. Section 3 completes the macroeconomic model and derives the

optimal policy rule of an inflation-targeting central bank when the relevant model parame-

ters are known. In section 4, the cautionary Brainard-style policy rule is derived analytically

in a static version of the model. Section 5 presents the dynamic framework with learning.

A quantitative comparison of the optimal, cautionary and certainty-equivalent policy rules

is provided in sections 6 to 8. Section 9 concludes and discusses avenues for future research.

The numerical algorithm used in this paper is described in more detail in the appendix.

2 The Phillips curve: Two empirical examples and a theo-
retical specification

A standard empirical specification of the Phillips curve, which is estimated in many of the

econometric studies mentioned in the introduction, takes the following linear form:

πt = α +
I∑

i=0

βiut−i +
J∑

j=1

γjπt−j + κzt + et. (1)

This regression equation includes several lags of the unemployment rate, ut, and the inflation

rate, πt, as well as a vector zt containing proxy variables for supply shocks and various

dummy variables, and a random noise term, et. Regression parameters are denoted by

Greek letters. In the following analysis, I will abstract from the proxy and dummy variables,

zt, and focus on estimates of the intercept, α, the sum of slope coefficients, β =
∑I

i=0 βi,

and the sum of coefficients on lagged inflation, γ =
∑J

j=1 γj . The estimates will be denoted

10See for example Taylor (1993, 1999), Rotemberg and Woodford (1997), McCallum (1999), Clarida, Gali
and Gertler (1998, 1999), Levin, Wieland and Williams (1999, 2003) and many others.
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by Roman letters, i.e. a for the estimate of the intercept, b =
∑I

i=1 bi for the slope of

the Phillips curve, and c =
∑J

j=1 cj for the degree of inflation persistence. An estimate

of the natural unemployment rate can be obtained from the ratio of the negative of the

regression constant and the sum of the coefficients on current and lagged unemployment

rates, −ab−1.11 Thus, the degree of uncertainty regarding NAIRU estimates discussed in

the literature depends on the precision of the slope estimate of the Phillips curve.

Table 1: Phillips Curve Estimates

Source a b c va vb vab

Fuhrer (1995) 1.68 -0.28 1.0 0.58 0.015 -0.09

Staiger et al. (2002) -0.28 1.0 0.01

Notes: b and c refer to the sums of point estimates
∑

bi and
∑

cj .

va, vb and vab denote the variances and covariances of the estimates

where available.

To pick an example from the literature on the U.S. economy, I turn to Fuhrer (1995) who

estimates equation (1) with a constraint that the coefficients on lagged inflation rates sum

to one, i.e. c =
∑J

j=1 cj = 1. Thus, the overall degree of inflation persistence is imposed

rather than estimated. The specification satisfying this constraint is often referred to as the

’accelerationist’ Phillips curve. Fuhrer’s estimates are reported in the first row of Table

1.12 This row also contains the variance of the intercept estimate, va, the variance of the

sum of slope estimates, vb, and their covariance, vab.13 The NAIRU estimate obtained by
11An approximate measure of the variance of the estimated NAIRU can be calculated by the delta method,

which involves taking a first-order Taylor series approximation to the nonlinear function and computing the
variance of this approximation. However, the ratio of the intercept and the sum of slope coefficients has a
doubly non-central Cauchy distribution with dependent numerator and denominator for which means and
variances do not exist. Such a distribution may be skewed and heavy-tailed. Staiger et al. (1997b) point out
that when the slope is estimated imprecisely, normality as implied by the delta method can provide a poor
approximation to the distribution of this ratio. They provide an alternative method to calculate confidence
intervals, which are exact under the assumption of exogenous regressors and normal errors.

12These estimates are taken from Table 1a on page 47 of Fuhrer (1995). They were obtained using quarterly
data on the CPI excluding food and energy and the civilian unemployment rate from 1960:2Q to 1993:4Q.
The author uses 12 lags of inflation, 2 lags of unemployment, and, in addition, the price of oil as a proxy for
supply shocks.

13I have computed the variances and covariance of the sums of coefficient estimates using the complete
regression results sent to me by the author.
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Fuhrer (1995) is 6% with a standard error of .56. For comparison, Table 1 also reports an

estimate of the slope of the Phillips curve and its variance from Staiger, Stock and Watson

(2002).14

In the remainder of this paper, I will study optimal monetary policy design under uncer-

tainty about the Phillips curve treating it effectively as stable under a range of alternative

policy rules. However, as emphasized by the Lucas critique, equation (1) need not neces-

sarily be stable with respect to alternative policies in spite of its empirical success. For

example, the sum of lags of inflation,
∑J

j=1 γjπt−j , may at least partially reflect forward-

looking expectations by market participants. Forward-looking market participants would

take into account systematic changes in policy in forming their expectations. To allow for

this possibility, I will extend the Phillips curve used in the subsequent policy analysis to the

‘backward and forward-looking components’ model of Buiter and Miller (1985) and Clark,

Goodhart and Huang (1999):15

πt = β(ut − u∗) + γπt−1 + (1− γ)πe
t + et, where β < 0, 0 < γ ≤ 1, (2)

= α + βut + γπt−1 + (1− γ)πe
t + et, where α = −βu∗.

Here, the long-run equilibrium rate of unemployment is denoted by u∗. It is also the non-

accelerating-inflation rate of unemployment (NAIRU). Current inflation πt is related to the

deviation of the unemployment rate ut from the natural rate with a negative slope parameter

β and to a normally-distributed random shock et ∼ N(0, σ2). Furthermore, current inflation

depends on lagged inflation πt−1 as well as price setters’ expectation of inflation πe
t . The

backward-looking component reflects inertia in inflation that may be derived from some

types of overlapping wage contracts (cf. Fuhrer and Moore (1995)) or may be attributed to

the presence of rule-of-thumb price setters. The degree of inflation inertia is determined by

the index parameter γ. The parameter on the forward-looking component is set at 1− γ so
14This estimate is taken from the first column of Table 1.2 on page 18 of Staiger et al. (2002). They use the

GDP deflator as measure of prices and the civilian unemployment rate. Contrary to Fuhrer’s specification
of the Phillips curve, their specification allows for a time-varying intercept and thus a time-varying NAIRU.

15Contrary to these authors, however, I use the unemployment gap rather than the output gap in the
Phillips curve to match the empirical studies noted above.
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that the two components sum to unity.

With γ = 1 equation (2) simplifies to the accelerationist Phillips curve estimated by

Fuhrer (1995). Alternatively, with the assumption of adaptive (random-walk) expectations

formation, πe
t = πt−1, equation (2) simplifies to the accelerationist Phillips curve for any

value of γ. Fuhrer’s (1995) estimate of this specification forms the starting point for the

comparative quantitative policy analysis in the remainder of this paper. Building on this

benchmark an assessment of the consequences of forward-looking, rational expectations

formation is obtained for the intermediate case with 0 < γ < 1.16

3 Optimal monetary policy when the parameters of the
Phillips curve are known

A central bank that pursues a strict inflation-targeting strategy as defined by Svensson

(1997a) chooses its main policy instrument, the short-term nominal interest rate it, so as to

minimize the discounted sum of expected inflation deviations from its inflation target π∗:17

Min
[it]∞t=0

E

[ ∞∑

t=1

δt−1(πt − π∗)2|π0

]
. (3)

δ refers to the central bank’s discount factor. The expected per-period loss denoted by L(πt)

in the following can be decomposed into two terms indicating the possibility of a tradeoff

between the conditional expectation of inflation deviations from target and the conditional

variance of inflation:

L(πt) = Et−1

[
(πt − π∗)2

]
= (Et−1 [πt − π∗])2 + V ARt−1 [πt] . (4)

16Empirical estimates of this structural Phillips curve specification tend to indicate a significant degree
of inflation persistence with γ ranging from 0.5 to near unity (cf. Fuhrer (1997) and Roberts (1997)).
The New-Keynesian Phillips curve, which has received much interest in the recent literature (cf. Gali and
Gertler (1999)), differs from the above specification in the timing of the forward-looking inflation term,
which concerns period t + 1, and in the use of the output gap rather than the unemployment gap. The
preferred empirical specification of the New-Keynesian Phillips curve also embodies a significant degree of
inflation persistence.

17An extension to flexible inflation targeting, which incorporates an output or unemployment stabilization
objective, will be discussed in the final section of the paper.
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In addition to the Phillips curve equation (2) two more equations are needed to complete

a simple model of the transmission of monetary policy from the nominal interest rate to

inflation. Using a version of “Okun’s Law,”18 the unemployment rate is related to aggregate

demand, qt. Aggregate demand in turn depends on the short-term real interest rate, i.e. on

the difference between the nominal rate and expected inflation and thereby on the policy

instrument:

ut = φqt, (5)

qt = λ(it − πe
t ), (6)

where φ = λ = −1 in the following.

In the remainder of the paper the notation is simplified by setting the Okun’s law parameter,

φ, and the interest-rate sensitivity of aggregate demand, λ, equal to negative unity. For these

values the short-term real interest rate can simply be substituted for the unemployment rate

in the Phillips curve equation (1).19

In order to render the exposition as straightforward as possible, optimal policy is first

derived in a static version of the model where the central bank is only concerned with

current expected loss (i.e. δ = 0), and then in the dynamic version (i.e. 0 < δ < 1). In

addition, two specifications of market participants’ expectations of inflation, πe
t , will be

considered separately: first, the case of adaptive, random walk expectations corresponding

to the benchmark specification of Fuhrer (1995), πe
t = πt−1, and then the case of forward-

looking, rational expectations, πe
t = Et−1[πt].

Optimal policy in the static model with adaptive inflation expectations

In the static version of the model the central bank sets the nominal interest rate it so as

to minimize current expected loss L(.) based on its knowledge of the current state and the
18For a textbook discussion of this empirical regularity see Dornbusch and Fischer (1990).
19This notation seems appropriate given that the paper focuses on the policy impact of uncertainty regard-

ing the parameters of the Phillips curve only. The reader interested in the impact of alternative values for φ
and λ is referred to the earlier working paper version Wieland (2003). In addition, an extension considering
uncertainty with respect to these parameters is briefly discussed in the concluding section.
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parameters of the economy. As indicated by equation (4) current expected loss contains two

elements, the central bank’s conditional expectation of inflation as well as the conditional

variance of inflation. With market participants’ expectations equal to lagged inflation the

central bank’s conditional expectation of inflation corresponds to:

Et−1[πt] = α + β(it − πt−1) + πt−1 = β(it − πt−1 − u∗) + πt−1. (7)

The conditional variance turns out to be independent of policy it and equal to the exogenous

variance of the random shock et:

V ARt−1[πt] = σ2. (8)

Thus, the central bank will be able to minimize L(.) simply by setting the interest rate to

the value that induces an expected inflation rate equal to the inflation target, Et−1[πt] = π∗.

This approach has been termed “inflation forecast targeting” by Svensson (1997a). As a

result, the expected deviation from target will be equal to zero and the minimized loss will

correspond to the exogenous conditional variance (8). The implied optimal interest rate

rule is:

it = u∗ + πt−1 − 1
β

(πt−1 − π∗). (9)

The first term essentially represents the equilibrium real interest rate, which is related

to equilibrium unemployment. The second term stands for market participants’ adaptive

inflation expectations. It ensures that policy moves sufficiently to achieve the desired

change in the real interest rate, it − πt−1. The third term represents the central bank’s

response to past inflation deviations that is intended to return inflation to its target value

in the next period. The neutral setting of the nominal interest rate when inflation is on

target corresponds to: it = u∗ + π∗.

Optimal policy in the static model with rational inflation expectations

If market participants form expectations rationally, they will take into account the state

and the parameters of the economy including the policy rule pursued by the central bank.
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Thus, substituting equations (5) and (6) in (2), market participants’ inflation expectations

correspond to:

πe
t = Et−1[πt]

= β (iet −Et−1[πt]) − βu∗ + γπt−1 + (1− γ)Et−1[πt]

= (γ + β)−1(β iet − βu∗ + γπt−1 ). (10)

Here, the private sector’s expectation regarding monetary policy is denoted by iet . It indi-

cates that we need to distinguish between discretionary policy and a possible commitment

by the central bank to a specific policy rule. Under discretion, the central bank optimizes

policy taking private sector expectations as given and unaffected by its choice of interest

rate. Under commitment, the central bank internalizes the impact of its decision rule on

private sector expectations and commits to delivering the state-contingent interest rate set-

ting that is expected under this rule. The recent literature on monetary policy rules20 has

emphasized the benefits of adhering to a rule rather than pursuing discretionary policy.

Thus, in the following analysis I will focus on the optimal policy under commitment and

only return to the case of discretion in the last section of the paper.

As shown in the case of adaptive expectations, the central bank will set the nominal

interest rate it so as to minimize L(.) based on its knowledge of the state of the economy (i.e.

lagged inflation) and the parameters (i.e. β, γ and u∗) but before the shock et is realized.

It can predict and respond to impending changes in inflation only to the extent that they

result from endogenous inflation persistence but not to the current-period random shocks.

When the central bank is committed to a state-contingent rule such as

it = H(πt−1, π
∗, β, γ, u∗), (11)

it implicitly takes into account how its actions affect private sector expectations. Clarke et

al. (1999) show that the optimal policy under commitment to such a rule can be obtained

by minimizing the loss function L(.) with respect to it and iet under the explicit restriction
20See for example the contributions in Taylor (1999).
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that the ex-ante expected nominal interest rate, iet , is equal to its rational expectation:21

iet = Et−1[it |πt−1, π
∗, β, γ, u∗]. (12)

From (11) and (12) and the assumption that neither the central bank nor the private

sector have prior information on the random shock (et) when choosing it and iet respec-

tively, it follows that the private sector’s ex-ante rational expectation of the nominal in-

terest rate will be equal to the interest rate prescribed by the state-contingent policy rule,

Et−1[it |πt−1, π
∗, β, γ, u∗] = H(πt−1, π

∗, β, γ, u∗). Consequently, the private sector’s rational

expectation of inflation is

πe
t = Et−1[πt] = (γ + β)−1(β H(πt−1, π

∗, β, γ, u∗)− βu∗ + γπt−1). (13)

Symmetric information between the central bank and the private sector implies that the

expectation derived in (13) also constitutes the central bank’s rational expectation of in-

flation entering the current expected loss L(.).22 The conditional variance of inflation is

independent of policy and equal to (8). Thus, the central bank is again able to minimize

L(.) by means of inflation forecast targeting. The optimal interest rate rule that ensures

that expected inflation always equals the target rate corresponds to:

it = H(πt−1, β, γ, u∗) = u∗ + π∗ − γ

β
(πt−1 − π∗). (14)

Contrary to the optimal policy under adaptive expectations in equation (9), the optimal

policy under rational expectations depends on the index of inflation persistence γ that

measures the relative importance of the backward- and forward-looking components in

the Phillips curve. A comparison of the partial derivatives of (14) and (9) with respect to

lagged inflation shows that the central bank needs to respond to an increase in inflation by

raising the nominal interest rate in the subsequent period to a greater extent if the private
21In this notation the private sector’s expectations of inflation and the nominal interest rate, πe

t and iet , are
variables, while the rational expectations at time t− 1, Et−1πt and Et−1it, are functions of the policy rule,
lagged inflation and the parameters. Committing to Et−1[it] has also been used as a commitment strategy
by Svensson (1997b) and many others.

22Possible extensions allowing for asymmetric information are discussed in the final section of the paper.
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sector forms adaptive rather than rational expectations, (β−1)(β)−1 > −γ(β)−1 > 0 where

β < 0. The reason is that forward-looking market participants expect the central bank

to raise interest rates sufficiently to return inflation to target in the next period. Under

commitment, the central bank in turn takes into account this beneficial effect of market

participants’ expectations in the formulation of the policy rule. In the literature this effect

is typically referred to as the ’expectations channel’ of monetary policy transmission.

Optimal policy in the dynamic model

The question remains whether optimal policy in the dynamic model with positive dis-

count factor δ differs from the optimal rules (9) and (14) derived in the static version of the

model, respectively with adaptive and rational expectations. Recognizing that these rules

implement inflation forecast targeting, the answer to this question is simple. Following

these rules in every period will ensure that expected inflation remains equal to the target

in every period. With expected inflation deviations from target pinned down at zero, the

infinite horizon loss will be equal to the discounted sum of conditional variances of infla-

tion,
∑∞

t=0 δt(σ2) = (1−δ)−1σ2. Since the variance of shocks, σ2, is exogenous the expected

discounted sum of losses cannot be reduced further and the rules (9) and (14) also achieve

the global minimum in the dynamic version of the model, respectively with adaptive and

rational expectations.

4 Parameter uncertainty and Brainard-style conservatism

We now turn to the central question of the paper, namely what is an appropriate policy rule

H(.) when the parameters of the Phillips curve are unknown. A possible solution would be

to use the rules derived in the preceding section but to replace actual parameters with the

estimates available from section 2:

E







α
β
γ





 =




a
b
c


 . (15)
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Using these estimates certainty-equivalent policy rules, it = Hceq(.), can be defined as

follows:

Hceq(.) =
a

b
+ πt−1 − 1

b
(πt−1 − π∗) with adaptive expectations, (16)

Hceq(.) =
a

b
+ π∗ − c

b
(πt−1 − π∗) with rational expectations. (17)

These rules may be useful as benchmarks for comparison but they are not optimal, because

they disregard the uncertainty associated with the parameter estimates and summarized by

their covariance matrix:

V ar







α
β
γ





 = Σ =




va vab vac

vab vb vbc

vac vbc vc


 . (18)

Optimal policy in the static model with adaptive inflation expectations

With πe
t = πt−1, the central bank’s conditional expectation of inflation corresponds to:

Et−1[πt] = a + b(it − πt−1) + πt−1. (19)

The conditional variance of inflation, which forms the second component of the central

bank’s current expected loss L(.), now depends on the degree of parameter uncertainty and

on the policy instrument it:

V ARt−1[πt] = σ2 + va + vb(it − πt−1)2 + 2vab(it − πt−1) (20)

As a consequence, the central bank faces a trade-off between the expected deviation of

inflation from target and the conditional variance of inflation. The optimal rule does not

imply inflation-forecast targeting and instead takes into account inflation uncertainty:

it = Hcau(.) = −ab + vab

b2 + vb
+ πt−1 − b

b2 + vb
(πt−1 − π∗) (21)

In his seminal paper Brainard showed that multiplicative parameter uncertainty

such as the uncertainty captured by vb provides a motive for cautious, grad-
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ualist policymaking.23 Brainard’s finding of cautionary policy is confirmed by

showing that the response coefficient on the inflation gap in equation (21) is

smaller in absolute value than in the certainty-equivalent rule in equation (16),

| − b(b2 + vb)−1| < | − b−1|. This conclusion follows directly from the fact that the variance

vb is positive in the presence of parameter uncertainty. For this reason, I will refer to this

rule as the ’cautionary’ rule. In the presence of parameter uncertainty the central bank

will increase the nominal interest rate subsequent an inflationary shock by less than in the

absence of uncertainty. This increase in the interest rate will not be sufficient to return ex-

pected inflation to target by the next period. Thus, even a strict inflation-targeting central

bank will not attempt to keep expected inflation always on target. Instead, inflation will

remain elevated and return to target gradually over the next few periods. As the quote by

Blinder in the introduction to this paper suggested parameter uncertainty leads to gradu-

alist policy-making. Interestingly, however, policy does not depend on the variance of the

intercept, va, the reason being that for a linear model and quadratic objective function

certainty-equivalence applies with respect to additive uncertainty.

Another interesting finding concerns the neutral setting of the interest rate that turns

out to depend on the variance vb and the covariance vab. Due to this ’covariance effect’ it

may differ from the neutral setting in the certainty-equivalent rule, which corresponds to

the sum of the natural rate estimate and the inflation target, −ab−1 + π∗. Why does the

cautionary rule not adopt the same neutral setting when inherited inflation is on target?

The reason is related to inflation uncertainty. The setting of the interest rate that minimizes

the conditional variance of inflation need not be equivalent to its estimated neutral level.

Rather, the cautionary rule sets the nominal interest rate according to a simple weighted

average of its neutral level and the variance-minimizing level:

Hcau(πt−1 = π∗) =
b2

b2 + vb

(
−a

b
+ π∗

)
+

vb

b2 + vb

(
−vab

vb
+ π∗

)
. (22)

23Other papers that have studied this effect are Clarida, Gali and Gertler (1999), Estrella and Mishkin
(1998) and Svensson (1999). Sack (2000) shows how parameter uncertainty can explain the high degree of
serial correlation in interest rates.
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Here, the first term in large parentheses corresponds to the level of the nominal interest

rate, which ensures that unemployment is equal to the natural rate, while the second term

corresponds to the variance-minimizing level of the nominal interest rate. This tendency to

set the nominal interest rate near the variance-minimizing level clearly reflects a cautionary

motive.

By definition, the variance-minimizing level corresponds to that level where the

central bank can assess the impact of policy on inflation (via unemployment) with

the highest possible precision. This is the case when unemployment and interest rates

are at their average level throughout the sample used to obtain the estimates a and

b. Ordinary least squares imply that the covariance of the Phillips curve estimates

is simply the negative of the product of the sample mean of unemployment denoted

by ū and the variance of the slope, i.e. vab = −ūvb.24 Furthermore, ordinary least

squares implies that a = ∆π − bū. Thus, if the first difference of inflation is zero over

the sample, it follows that the sample mean of unemployment equals the natural rate

ū = ab−1, and the neutral level of the cautionary rule collapses to the neutral level of the

certainty-equivalent rule. This turns out to be the case for the estimates obtained by Fuhrer

(1995) reported in Table 1: ū = −vab(vb)−1 = 0.09(0.015)−1 = 6 = −ab−1 = 1.68(−0.28)−1.

Optimal policy in the static model with rational inflation expectations

Given symmetric information between the central bank and market participants regard-

ing the data used to estimate the Phillips curve, forward-looking market participants will

utilize those same estimates (a, b, c) and covariance matrix Σ in forming expectations. Thus,

the central bank’s and market participants’ expectation of inflation as of t − 1 can be ex-

pressed as a function of lagged inflation, the parameter estimates and the central bank’s

policy rule H(πt−1, a, b, c,Σ), which in turn depends on the parameters and covariance
24For a derivation see Greene (1993), pp 155-157.
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matrix defined in (18):

Et−1[πt] = a + b(H(.)− Et−1[πt]) + cπt−1 + (1− c)Et−1[πt]

= (c + b)−1(a + bH(.) + cπt−1). (23)

The second component of current expected loss L(.), the conditional variance of inflation,

then corresponds to:

V ARt−1[πt] = σ2 + va + vbu2
t + vc(πt−1 − Et−1πt)2 (24)

+2vabut + 2vac(πt−1 − Et−1πt) + 2vbcut(πt−1 − Et−1πt)),

where ut = (H(.)− Et−1πt) and Et−1πt is defined as in (23).

The optimal policy rule trades off the impact of policy on the conditional expectation and

the conditional variance on inflation. It takes the form:

it = Hcau(.) =
b2

b2 + R1

(
−a

b
+ π∗

)
+

R1

b2 + R1

(
−aR2 + R3

R1
+ π∗

)
(25)

− cb−R1

b2 + R1
(πt−1 − π∗),

where the effect of the parameter variances and covariances is summarized by (R1, R2, R3):

R1 = vbc2 + vcb2 − 2vbcbc

R2 = (vc + vbc)b− (vb + vbc)c (26)

R3 = vabc(c + b)− vacb(c + b).

Each of these three coefficients would be zero in the absence of uncertainty and the policy

rule would simplify to (17). Under uncertainty, however, optimal policy depends on the

parameter variances (vb, vc) and covariances (vab, vac, vbc).

Similarly to the case of adaptive expectations two Brainard-style effects of uncertainty

can be identified under rational expectations. The first effect is reflected by the two terms

in the first row of (25). These two terms constitute the weighted average of the natural
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level of the interest rate and its variance-minimizing level. Again, the cautionary policy

leans towards the variance-minimizing level and may therefore differ from the natural level

even when inflation is on target.

The second effect concerns the policy response to inflation deviations from target. Again,

the response of the cautionary rule (25) subsequent to an increase in inflation is more muted

than under the certainty-equivalent rule (17). The partial derivative ∂Hcau/∂πt−1 is a

function of the variance of the slope estimate, vb, the variance of the index of persistence,

vc, and their covariance, vbc. R1 in (26) corresponds to the variance of (βc − γb). Thus,

R1 > 0 in the presence of parameter uncertainty. With b < 0 and −b < c it is then

straightforward to show that:

∂Hcau

∂πt−1
= −cb−R1

b2 + R1
<

∂Hceq

∂πt−1
= −c

b
. (27)

Optimal policy in the dynamic model with constant parameter uncertainty

In the case of known parameters it is straightforward to show that the optimal policy

in the static version of the model also achieves the global minimum in the dynamic version

where the central bank aims to minimize expected current and discounted future losses and

the discount factor is positive, (0 < δ < 1). The cautionary policy rule (25), however, is

not necessarily optimal in the dynamic model. There exist several dynamic links in the

model with unknown parameters. Most interestingly, the central bank may re-estimate the

unknown parameters every time new data arrives and thereby learn over time. In the next

section, I show how the estimates of the parameters of the inflation equation (2) may be

updated over time and how such learning introduces an important dynamic link between

current policy decisions and future parameter uncertainty and stabilization performance.

Following Brainard (1967) in assuming that parameter estimates and parameter uncer-

tainty remained fixed over time, one can instead solve for the dynamically optimal policy

conditional on the sole remaining dynamic link that arises from lagged inflation in the
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Phillips curve:

Min
H(.)

E

[ ∞∑

t=1

δt−1(πt − π∗)2 | π0

]
(28)

s.t. it = H(πt−1, π
∗, a, b, c,Σ)

and πt = α + β(H(.)−Et−1[πt]) + γπt−1 + (1− γ)Et−1[πt] + et

where Et−1[πt] is defined by (23)

and (a, b, c,Σ) is constant for t = 1,∞.

Here, the Phillips curve with rational expectations (defined as in equation (23)) is con-

sidered. The dynamic problem under adaptive expectations is formulated analogously by

making the optimization instead s.t. πt = α + β(H(.)− πt−1) + πt−1 + et.

Contrary to the case with known parameters, the presence of a trade-off between ex-

pected inflation and inflation variance could be the source of differences between the optimal

rule in the static model derived previously and the solution to this dynamic problem. To

investigate this possibility I rewrite the dynamic optimization problem defined above as

a standard dynamic programming problem with lagged inflation πt−1 as its single state

variable. Denoting the value function for this dynamic program by V (π) the associated

Bellman equation corresponds to:

V (πt−1) =
Min
H(.)

L(πt−1,H(.), a, b, c,Σ )

+ δ

∫
V (πt( H(.) , ..) ) f( πt| πt−1, a, b, c,Σ ) dπ, (29)

subject to constraints summarized in (28). f(πt|.) denotes the predictive distribution of

inflation.

In the absence of a simple analytical solution, I solve for the optimal policy numerically

by iterating over the Bellman equation. The numerical methods are described in more

detail in the appendix. Numerical solutions are obtaining using the parameter estimates

and covariances also employed in section 6 and subsequent sections. Interestingly, the
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numerical solution to the dynamic problem is indistinguishable (up to the accuracy of the

numerical approximation) from the solution to the static problem, (i.e. equation (25)).

Absent a formal proof, my conjecture is that optimal policy is identical in the dynamic and

static cases.

5 Rational learning and the optimal policy rule

As new observations on inflation and unemployment become available, the central bank and

forward-looking market participants may update their estimates of the unknown Phillips

curve parameters. In order to analyze rational learning by the central bank and market

participants, I will draw on the well-developed framework of the Bayesian learning literature

cited in the introduction. In particular, Easley and Kiefer (1988), Kiefer and Nyarko (1989)

and Wieland (2000a) study Bayesian learning in controlled regressions. These authors

consider the following regression, where Xt denotes the vector of explanatory variables, β̃

the vector of unknown parameters, yt the dependent variable and et a random shock:

yt = β̃′Xt + et. (30)

At least one of the explanatory variables in Xt is chosen by a decision maker with market

power, such as the central bank considered in this paper. This choice is made conditional

on its prior belief regarding the unknown parameters that is modelled with a probability

distribution p(β̃|θt−1). The vector θt−1 contains all state variables which are required to

describe this distribution based on the information available in period t−1. Then a random

shock et with distribution N(0, σ2) occurs and a new realization of the dependent variable

yt can be observed. Before choosing next period’s control, the decision maker updates his

beliefs using the new information (yt, Xt). The posterior distribution is obtained using

Bayes rule,

p(β̃|θt) =
p(yt|β̃, Xt, θt−1)p(β̃|θt−1)

p(yt|xt, θt−1)
, (31)

which implies a set of nonlinear updating equations for the state variables θt:

θt = B(θt−1, Xt, yt). (32)
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In the following, I specify the elements of the Bayesian learning framework when applied

to the model in this paper, respectively with adaptive and rational expectations in the

Phillips curve.

Updating the central bank’s beliefs when market participants form adaptive expectations

In the case of the Phillips curve with adaptive expectations estimated by Fuhrer (1995)

and Staiger et al. (2002) the relevant regression equation is:

πt − πt−1 = α + βut + et. (33)

This regression fits the regression equation of the Bayesian learning model defined by (30)

as follows: Xt = (1 ut)′, yt = πt − πt−1 and β̃ = (α β)′. With et distributed normally with

known variance σ2 the central bank’s prior beliefs are described by the following normal

distribution:

p

((
α
β

)
|θt−1

)
= N

((
at−1

bt−1

)
, Σt−1 =

(
va
t−1 vab

t−1

vab
t−1 vb

t−1

))
. (34)

Thus, θt−1, the vector of state variables describing beliefs, has five elements:

(at−1, bt−1, v
a
t−1, v

ab
t−1, v

b
t−1). The subscript t − 1 is appended to the point estimates and

covariances to denote the estimation conditional on information up to and including period

t−1. As new information (ut, πt) becomes available the point estimates and covariances rep-

resenting the central bank’s beliefs are updated. Bayes rule implies the following updating

equations:
(

at

bt

)
=

(
at−1

bt−1

)
+ Σt−1XtF

−1(πt − πt−1 − at−1 − bt−1ut)

(35)

Σt = Σt−1 − Σt−1XtF
−1X ′

tΣt−1 where F = XtΣt−1X
′
t + σ2.

A derivation of the updating equations using Bayes rule can be found in Zellner (1971).

In the case considered here, the updating equations correspond exactly to recursive least

squares as can be seen from Harvey (1992). F refers to the conditional variance of the
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dependent variable. The means a and b are only updated if the observed change in inflation

differs from the expected change in inflation. The covariance matrix, however, changes

deterministically as a function of the square of the explanatory variables X. The updating

is conditional on a known normal distribution of random shocks. This assumption is

standard in the optimal learning literature. It guarantees that given a normal prior, the

posterior belief will also be a normal distribution. The asymptotic behavior of posterior

beliefs is discussed in section 7.

Updating beliefs when the central bank and market participants learn rationally

As new observations on inflation and unemployment become available, not only the

central bank but also forward-looking market participants can update their estimates of

the unknown parameters in the Phillips curve. As long as they share the same information

and start off with the same prior belief about the unknown parameters, their estimates and

updating equations will coincide.

In the case of the Phillips curve with partially forward-looking expectations the central

bank and market participants will estimate the following equation recursively:

πt − Et−1πt = α + βut + γ(πt−1 − Et−1πt) + et. (36)

Somewhat surprisingly perhaps, this regression can also be mapped into the regression equa-

tion (30) of the Bayesian learning model by defining explanatory and dependent variables

as follows: Xt = ( 1 ut (πt−1 −Et−1πt) )′, yt = πt − Et−1πt and β̃ = (α β γ)′. The

essential insight is to recall that beliefs are updated recursively. When updating estimates

and covariance matrices from period t− 1, the conditional expectation of inflation based on

t− 1 information is known and defined by equation (23). Thus, the conditional expectation

may be subtracted from dependent and explanatory variables in period t as suggested above

to match the simple regression of the Bayesian learning model.

Due to the addition of the index of inflation persistence, γ, the central bank’s and

forward-looking market participants’ beliefs are now represented by a trivariate normal
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distribution:

p







α
β
γ


 |θt−1


 = N







at−1

bt−1

ct−1


 , Σt−1 =




va
t−1 vab

t−1 vac
t−1

vab
t−1 vb

t−1 vbc
t−1

vac
t−1 vbc

t−1 vc
t−1





 . (37)

The vector of state variables θ that characterize beliefs now contains nine variables, the

three means (at−1, bt−1, ct−1), the three variances (va
t−1, v

b
t−1, v

c
t−1) and the three covari-

ances (vab
t−1, v

ac
t−1, v

bc
t−1). The updating equations implied by Bayes rule again correspond to

recursive least squares:



at

bt

ct


 =




at−1

bt−1

ct−1


 + Σt−1XtF

−1(πt − Et−1πt − at−1 − bt−1ut − ct−1(πt−1 − Et−1πt))

(38)

Σt = Σt−1 − Σt−1XtF
−1X ′

tΣt−1 where F = XtΣt−1X
′
t + σ2

where Et−1πt is defined by (23).

Optimal policy with rational learning

Due to learning by the central bank, the current choice of the interest rate will affect

the precision of the point estimates and the estimates themselves through its impact on

current unemployment, inflation expectations and inflation. By choosing the interest rate

appropriately, the policymaker can raise the precision of parameter estimates and improve

future performance, albeit at the expense of higher current variability of inflation. Thus,

the optimal policy rule H(πt−1, θt−1, π
∗) with learning solves the following optimization

problem:

Min
H(.)

E

[ ∞∑

t=1

δt−1(πt − π∗)2 | (π0, θ0)

]
(39)

s.t. it = H(πt−1, θt−1, π
∗)

and πt = α + β(H(.)−Et−1[πt]) + γπt−1 + (1− γ)Et−1[πt] + et

where Et−1[πt] is defined by (23)

and s.t. the belief updating equations (38).
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This is a dynamic discrete-time stochastic control problem, which can be rewritten as a

dynamic program. A nonstandard feature of this dynamic problem is that decisions affect

the operator E, which denotes the statistical expectation. However, one can still use a stan-

dard contraction mapping argument as in Kiefer and Nyarko (1989) to show that a unique

value function exists that solves the dynamic program and corresponds to the infimum of

the sum of expected current and discounted future losses in (39). The state variables of

this dynamic programming problem are lagged inflation πt−1 and last period’s beliefs θt−1.

Denoting the value function for this dynamic program by V (π, θ), the associated Bellman

equation corresponds to:

V (πt−1, θt−1) =
Min
H(.)

L(πt−1, θt−1, H(.) )

+ δ

∫
V (πt( H(.) , ..) , θt( H(.), ..) ) f( πt| πt−1, θt−1,H(.) ) dπ

(40)

=
Min
H(.)

L(πt−1, θt−1, H(.) ) + δ

∫
V (α, β, γ, et, H(.) , πt−1, θt−1)

p(α, β, γ | πt−1, θt−1,H(.) ) f(e) dα dβ dγ de.

The two terms on the right-hand side of the upper equation in (40) characterize the tradeoff

between current control and estimation. L(.) is the expected current loss, while the second

term denotes the expectation of next period’s value function, which summarizes all future

losses and is multiplied by the discount factor δ. This second term incorporates the value

of information. Note that θt, the vector of beliefs at time t, is stochastic and can only be

calculated once time t unemployment and inflation observations become available. f(πt|.)
is the corresponding predictive distribution of inflation. Inflation, unemployment and next

period’s beliefs all depend on the central bank’s choice of interest rate it and thus on its

policy rule H(πt−1, θt−1, π
∗, σ2) that feeds back on all currently available information.

In the lower equation in (40), time t values of inflation and beliefs have been substi-

tuted out using equations (5), (6), (2), (23) and (38). They are functions of the previous

period’s inflation rate and beliefs and also of the unknown parameters and random shock
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et. Expectations are taken with respect to the unknown parameters and the random shock.

p(α, β, γ|.) is the trivariate normal distribution that describes the policymaker’s beliefs

about the unknown parameters. f(e) refers to the normal density function of the shocks in

the Phillips curve.

Associated with this Bellman equation is a stationary optimal policy function which

maps the state variables (πt−1, θt−1) into a value for the nominal interest rate:

it = Hopt(πt−1, θt−1, π
∗, δ, σ2). (41)

Unfortunately analytical solutions for Hopt(.) are not available due to the nonlinear nature

of the dynamic decision problem. However, one can use numerical dynamic programming

methods to approximate the value function and the optimal policy rule.

Numerical approximation

In order to obtain numerical approximations it is necessary to specify numerical values

for the central bank’s inflation target, its discount factor and the variance of shocks. These

values are reported in Table 2.

Table 2: Calibrated Parameters

Inflation Target Discount Factor Shock Variance
π∗ = 0 δ = 0.95 σ2 = 1

The Bellman equation (40) defines a contraction mapping with a unique fixed point,

which is the value function. Starting from an initial guess of the value function, one can ob-

tain successively better approximations by repeatedly solving the optimization problem on

the right-hand side of (40). It is well known that this iterative method can be implemented

numerically. However, its application is hampered by the “curse of dimensionality”, which

implies that the number of necessary computations increases geometrically with the number

of state variables. The numerical algorithm used here combines value function iterations
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with policy iterations to speed up convergence. Nevertheless, the optimal learning problem

with three unknown parameters in (39) that has a total of 10 continuous state variables is

too large to be solved numerically with reasonable precision.25

Instead I provide numerical results for alternative versions of the learning problem with

up to two unknown parameters in the following three sections. Section 6 presents optimal

policies for the benchmark specification with adaptive expectations as estimated by Fuhrer

(1995) and Staiger et al. (2002). First, I only treat the slope of the Phillips curve as

unknown and then the intercept and the slope together. To illustrate the resulting dynamic

learning behavior I simulate time paths under alternative policies in section 7. Section 8

extends the analysis to include forward-looking, rational learning by market participants.

6 The optimal balance of caution and experimentation

Our benchmark case for comparing optimal learning by the central bank with Brainard-style

conservatism is the estimated Phillips curve with adaptive expectations, i.e. πe
t = πt−1 in

equation (2). Fuhrer’s (1995) estimates of this equation, (a = 1.68, b = −0.28), imply a nat-

ural rate u∗ of 6%. The associated variances, (va = 0.58, vb = 0.015, vab = −0.09), are fairly

small and the respective ratios of point estimate and standard deviation, (2.21,−2.28),

indicate a high degree of statistical significance. From the Brainard-style analysis with

constant beliefs in section 4 we learned that uncertainty about the multiplicative slope

parameter β importantly affects the central bank’s policy choice, while the variance of the

intercept has no such effect. Thus, as a starting point for the policy comparison exercise, I

focus on the case with only β unknown.

Optimal policy with unknown slope

Figure 1 compares the policy response to lagged inflation implied by optimal, caution-

ary and certainty-equivalent policy making. The horizontal axis measures the deviation of

lagged inflation πt−1 from target. The vertical axis corresponds to the deviation of unem-
25The numerical algorithm and associated computation costs are discussed in more detail in appendix A.
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ployment from its natural rate to be expected given the central bank’s choice of interest

rate in response to the inherited inflation gap. The vertical axis also equals the deviation

of the real interest rate, (it − πe
t = it − πt−1), from its equilibrium value, r∗ = u∗.

Figure 1: Alternative Policies with Unknown Slope β
Prior Belief from Fuhrer (1995): (b = −0.28, vb = 0.015)
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The optimal policy rule (solid line with bold dots)26 is derived from the optimization

problem with learning in (39). It is compared to the certainty-equivalent rule (dashed line)

in equation (16) and to the cautionary policy rule (dashed-dotted line) derived from the

Brainard-style dynamic optimization problem without learning in (28). While this latter
26The bold dots correspond to the grid used for numerical approximation.
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rule is derived numerically with constant beliefs, it turns out to be indistinguishable from

the cautionary rule for the static model shown previously in equation (21).

The following three findings are directly apparent from Figure 1. First, the certainty-

equivalent and cautionary policy rules respond linearly to inflation for a given degree of

uncertainty, while the optimal rule responds in a nonlinear fashion. Second, the optimal

rule always requires a more aggressive policy response to inflation than the cautionary

rule. This difference, which represents the extent of experimentation incorporated in the

optimal rule, changes little in absolute terms for moderate to high inflation deviations from

target.27 Third, the optimal rule typically implies a less aggressive policy stance than

the certainty-equivalent rule that disregards parameter uncertainty. Thus, in spite of the

incentive to experiment, the optimal policy exhibits gradualism. The policy tightening (or

easing) following a shock to inflation is expected to persist for more than one period and

implies a gradual return of inflation towards the target.

Table 3 reports the optimal extent of gradualism and experimentation for inflation

deviations from target of two and three percentage points. The values shown in the table

represent the differences in the expected unemployment rate due to central bank policy.

Table 3: Optimal Degree of Gradualism and Experimentation
Differences in Expected Unemployment Rates when β is Unknown

Gradualism (Hceq −Hopt) Experimentation (Hopt −Hcau)

b = −0.28 vb = 0.01 vb = 0.015 vb = 0.01 vb = 0.015

πt−1 − π∗ = 2 0.45 0.58 0.35 0.57
πt−1 − π∗ = 3 0.85 1.17 0.37 0.55

Notes: (b = −0.28, vb = 0.015) estimated in Fuhrer (1995). (b = −0.28, vb = 0.01)

estimated in Staiger et al. (2002).

27In other words, the relative importance of experimentation declines with the size of the inflation deviation
from target. If inflation is substantially above target even the cautionary policy will result in a substantial
policy response that will be expected to generate quite a bit of information about the inflation-unemployment
tradeoff and the location of the natural rate.
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Here, gradualism refers to the difference between the certainty-equivalent and the optimal

policy rule: Hceq(πt−1 − π∗, b, vb) − Hopt(πt−1 − π∗, b, vb). It indicates that the certainty-

equivalent rule, which disregards parameter uncertainty, is too aggressive in fighting in-

flation. Experimentation refers to the difference between the optimal and the cautionary

policy rule: Hopt(πt−1 − π∗, b, vb)−Hcau(πt−1 − π∗, b, vb). It indicates that the cautionary

rule responds too litte to inflation deviations from target. The columns in Table 3 refer to

the parameter variances estimated by Fuhrer (1995) and Staiger et al. (2002) since they

obtain the same point estimate. The differences between the optimal policy and its two

alternatives are economically significant, ranging from one half to a full percentage point of

the unemployment rate. However, they are small relative to the overall policy response.

Given these differences the question arises to what extent the optimal policy improves

expected performance compared to Brainard-style conservatism or compared to complete

disregard of uncertainty. Figure 2 provides a comparison of expected losses as a function of

the lagged inflation gap given the beliefs underlying the policy comparison in Figure 1. Of

course, expected losses are lowest under the optimal policy. The next higher curve measures

the expected performance under the cautionary policy. The difference in performance is

largest near the inflation target, i.e. near an inflation gap of zero. Expected losses under

the certainty-equivalent policy that disregards uncertainty completely are even greater. In

percentage terms, however, the differences in losses are relatively small. This should not be

too surprising given that the degree of uncertainty about the parameter estimate b is rather

small. Also, in calculating expected losses for the cautionary and certainty-equivalent policy

rules it was assumed that the central bank would nevertheless update its beliefs over time.

If one assumes instead that beliefs remain constant expected losses will be significantly

larger. In the case of Brainard-style cautionary policy this is indicated by the highest curve

in Figure 2.

So far, I have only considered a scenario with very low uncertainty as suggested by the

estimates presented in section 2. However, uncertainty may be renewed occasionally as

structural changes occur. Furthermore, the precision of these estimates likely overstates the
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Figure 2: Value Functions under Alternative Policies with Unknown Slope β
Prior Belief from Fuhrer (1995): (b = −0.28, vb = 0.015)

−4 −3 −2 −1 0 1 2 3 4
21

21.5

22

22.5

23

23.5

24

24.5

25

Inherited Inflation Gap: π
 t−1

−π*

 

 

Optimal Policy
Certainty−Equivalent Policy
Brainard´s Cautionary Policy (Beliefs are Updated)
Brainard´s Cautionary Policy (Beliefs constant)

confidence with which policymakers (or the economics profession at large for that matter)

would rely on them in actual policy practice. Figure 3 extends the policy comparison

to alternative point estimates and considers scenarios of greater uncertainty. There are

nine panels. The first panel in the middle row corresponds to the benchmark case from

Figure 1, shown only for positive inflation deviations from target. The upper and lower

rows of panels are computed for point estimates of b = (−0.22,−0.34), which are within

one-half standard deviation from the empirical estimate of −0.28. The columns are ordered
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Figure 3: Alternative Policies with Unknown Slope β
A Range of Point Estimates and Variances
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as follows: the first column corresponds to a variance of vb = 0.015 as in Fuhrer (1995),

the second column to vb = 0.0289 and the third column to vb = 0.04. For b = −0.28 the

ratio of point estimate and standard deviation corresponds to 1.65 and 1.4, respectively,

indicating scenarios of borderline statistical significance. As this ratio becomes smaller (and

uncertainty greater) the wedge between the inflation responses of the certainty-equivalent

and cautionary rules widens substantially. Thus, it is widest in the upper-right panel and

smallest in the lower-left panel.
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From the nine panels in Figure 3 it is directly apparent that the optimal policy tends

to remain in between the certainty-equivalent and cautionary rules in terms of the policy

response to inflation in most scenarios. Thus, the optimal policy still embodies some degree

of gradualism, because it responds less actively than the certainty-equivalent rule, but also

some degree of experimentation, because it responds more actively than the cautionary rule.

Figure 4: Alternative Policies with Unknown Slope β
Point Estimate from Fuhrer (1995) with Extreme Uncertainty: (b = −0.28, vb = 0.0784)
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However, there are interesting exceptions where the finding of gradualism in optimal

policy is overturned. In particular, when lagged inflation is near the target (typically
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within less than 1 percentage point) and uncertainty is moderate to high, the optimal

policy response may be somewhat more aggressive than the certainty-equivalent rule. This

is apparent, for example, from the second and third panel in the middle row of Figure 3.

Furthermore, when uncertainty is extremely high, for example in the upper-right panel, the

optimal policy rule exhibits a discontinuity near the inflation target. This discontinuity is

illustrated more clearly in Figure 4 which shows the optimal policy with Fuhrer’s point

estimate of −0.28 but extreme uncertainty vb = 0.0784.

An implication of the discontinuity at zero is that the optimal policy response actively

perturbs inflation a bit near the target, purely to generate information. In this case, the

central bank accepts expected deviations from target relative to the certainty-equivalent

policy solely in order to obtain more precise parameter estimates and improve inflation

stabilization in the future. However, this case only arises in extreme scenarios where the

ratio of point estimate and standard error is near 1 as in Figure 4.

Optimal policy with unknown slope and intercept

Next, I extend the analysis to the learning problem with two unknown parameters,

that is, the intercept and slope of the Phillips curve. This problem has six state variables,

namely the two means, two variances, the covariance and lagged inflation. The results are

shown in Figure 5 which contains three panels. The first panel provides a comparison of

alternative policies for the full set of point estimates and covariances from Fuhrer (1995):

(a = 1.68, b = −0.28, va = 0.58, vb = 0.015, vab = −0.09). The second and third panel

contain scenarios with the same point estimates but greater variances. vb is set to the values

previously considered in Figure 3: (0.0289, 0.04). The variance of the intercept estimate va

is increased in the same manner. The covariance is chose to keep the correlation coefficient

constant at -0.965.

These results confirm that the main findings from the learning problem with unknown

slope concerning the optimal policy response to inflation carry over to the learning problem
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Figure 5: Alternative Policies with Unknown Intercept α and Slope β
Prior Belief: (a=1.68, b=-0.28) and Various Degrees of Uncertainty
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with unknown slope and intercept.28 The optimal response typically falls inside the wedge

created by the aggressive certainty-equivalent rule and the cautionary rule. Optimal policy

always incorporates some experimentation compared to the cautionary rule. However, it

still also remains gradualist, that is, less aggressive than the certainty-equivalent rule that

disregards parameter uncertainty. Exceptions to the principle of gradualism only occur near

the inflation target or under extreme uncertainty, and those exceptions tend to be small in

magnitude.

Table 4 reports the optimal extent of gradualism and experimentation with a prior

belief corresponding to the full set of Fuhrer (1995)’s estimates as in the first panel of

Figure 4. Again, the values reported in the table represent the differences in the expected

unemployment rate that arise under the alternative policy rules in response to inflation

deviations from target of two and three percentage points as in Table 3. Interestingly, the

optimal degree of experimentation is slightly greater if intercept and slope are unknown

than if only the slope parameter is unknown as can bee seen by comparing the results in

Table 4 to the columns in Table 3 for vb = .015. Similarly, the optimal degree of gradualism
28The optimal policy rule in the second and third panels exhibits a certain ”jumpiness”, which reflects

approximation error. Similar ”jumpiness” in the policy rules for one unknown parameter shown in Figures
1 and 3 disappeared once the number of grid points was drastically increased.
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is somewhat smaller than in the problem with one unknown parameter.

Table 4: Optimal Degree of Gradualism and Experimentation
Differences in Expected Unemployment Rates with α and β Unknown

Gradualism (Hceq −Hopt) Experimentation (Hopt −Hcau)

πt−1 − π∗ = 2 0.48 0.67
πt−1 − π∗ = 3 1.12 0.60

Notes: Point estimates and covariance matrix as estimated in Fuhrer (1995).

As discussed in section 3 the variance-minimizing setting of the unemployment rate with

a zero inherited inflation gap need not necessarily coincide with the estimated natural rate

and therefore may not keep future inflation on target. Whether the variance-minimizing

level of the unemployment rate deviates from the estimated natural rate depends on the

ratio of covariance and variance of the slope estimate. Using the estimated covariance

matrix from Fuhrer (1995) this ratio turns out to be equal to the natural rate estimate:

vab(vb)−1 = a(b)−1 = 6. Thus, the ’covariance effect’ discussed in section 3 does not arise

for our benchmark estimates. This property is therefore maintained for the two scenarios

with greater uncertainty presented in the middle and right panel of Figure 5. For alternative

scenarios studying this covariance effect the interested reader is instead referred to Wieland

(2003).

7 The dynamics of learning and convergence

The preceding section has compared the stationary policy and value functions at different

points in the state space, i.e. for given inherited inflation and given prior beliefs including

point estimates and covariance matrix. Over time, of course, beliefs will change and the

central bank will obtain more precise estimates of the unknown parameters. Thus, a given

set of point estimates will not always have the same implications for policy. To illustrate the

dynamic behavior of the economy under alternative policies I conduct a dynamic simulation
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taking into account that the central bank will be able to re-estimate the Phillips curve

every time new inflation and unemployment observations become available. This simulation

indicates the expected disinflation path when initial inflation is two percentage points above

target. While the initial point estimates are set to the values from Fuhrer (1995), (a1 =

1.68, b1 = −0.28), the initial covariance matrix implies a much greater degree of uncertainty

and is set to the same values as in the third panel in Figure 5, (va
1 = 1.55, vb

1 = 0.04, vab
1 =

−0.24).29

The two panels in the top row of Figure 6 show the expected paths of inflation and

unemployment under the certainty-equivalent policy (solid line), the cautionary Brainard-

style policy (dashed line) and the optimal policy (dotted line). All three policy rules re-

quire that the central bank raises interest rates in order to increase unemployment and

bring inflation back to target. However, the speed of disinflation differs across rules. The

certainty-equivalent rule ensures that inflation is expected to be back on target by the

next period. The cautionary rule disinflates more gradually over the course of three pe-

riods. Thus, the peak of unemployment is smaller under the cautionary rule than under

the certainty-equivalent rule. As one would expect based on the policy comparisons in

the preceding section, the optimal speed of disinflation lies in between the cautionary and

certainty-equivalent rules. In other words, the optimal policy exhibits gradualism compared

to the certainty-equivalent policy, which disregards parameter uncertainty but disinflates

more actively than the Brainard-style policy.

The lower four panels in Figure 6 report the expected dynamic paths of the point

estimates, variances and covariance. The point estimates stay constant over time. By

definition, the central bank cannot expect surprises that would change its point estimates.

Therefore, I simulate the expected disinflation path by setting the random shocks e1 to e5

equal to their expected value of zero and the true parameter values α and β equal to the

initial estimates a1 and b1.
29In other words, the initial situation can be thought of as a time period early in the sample of Fuhrer

(1995) when estimates would still have been very uncertain. Alternatively, it could be thought of as a time
period immediately following a structural change that would have renewed uncertainty.
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Figure 6: Disinflation and Learning with Alternative Policies
Point Estimates from Fuhrer (1995) with Initial Prior of High Uncertainty
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Turning from the point estimates to the dynamic path of the covariance matrix, the

simulated paths in Figure 6 clearly indicate that uncertainty decreases over time. The

variances and covariance are deterministic functions of the sum of squared deviations of the
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explanatory variable, i.e. the unemployment rate, from its sample average ūt:30

vb
t =

σ2

t∑
j=1

(uj − ūt)2

vab
t = −ūtv

b
t (42)

va
t =

σ2

t
+ ū2

t v
b
t

Thus, the central bank will expect the degree of uncertainty about Phillips curve parameters

to decline over time as long as stabilization policy leads to variations in the unemployment

rate. Since all three policy rules imply continued stabilization policy in the event of infla-

tionary shocks the covariance matrix must converge to zero in the long-run. How quickly

the reduction in uncertainty occurs depends on the magnitude of the policy response to

inflation. Consequently, the simulation in Figure 6 shows that uncertainty is reduced most

quickly under the certainty-equivalent rule and most slowly under the cautionary rule. The

optimal policy indicates the optimal speed of learning.

The point estimates at and bt follow a martingale relative to the central bank’s infor-

mation. Since the expected observation Et−1[πt − πt−1 − at−1 − bt−1ut] = 0 it follows that

Et−1[at] = at−1 and Et−1[bt] = bt−1 as already alluded to above. Whether the process of

posterior beliefs converges to the true values α and β has been studied by Kiefer and Nyarko

(1989). In particular, they show that if the explanatory variable ut does not converge to a

constant, then the process of posterior point estimates converges to the true values and the

covariance matrix to zero.31 As noted previously, ut will never settle down to a constant

value as long as inflationary shocks et lead to variations in the inflation rate and monetary

policy responds by moving the interest rate and consequently unemployment in order to

stabilize inflation. Thus, the central bank will eventually learn the true parameter values as

long as it follows any of the three alternative policies considered in this paper. Incomplete

learning about the parameters of the Phillips curve would only be a possibility if the central

bank would focus exclusively on stabilizing unemployment and would achieve a constant
30For a derivation see Greene (1993).
31For a proof see theorem 4.2. on page 577 in Kiefer and Nyarko (1989).
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unemployment rate, but then inflation would not be controlled.32

The speed of learning apparent from the reduction of uncertainty in Figure 6 seems

quite fast. Over two to four periods, depending on the policy rule followed, the central bank

transitions from a situation of very high uncertainty to the precision of parameter estimates

obtained by Fuhrer (1995). This finding sheds some doubt on the regression specification

chosen by Fuhrer and others in the empirical literature. An alternative specification would

be one that allows for shifts in Phillips curve parameters. In this case, uncertainty would

occasionally be renewed and the incentive to experiment would remain rather than die out

over time. This extension is left for future research. For an illustrative example of optimal

learning with time-varying parameters the reader is referred to Beck and Wieland (2002).

8 Optimal experimentation with forward-looking market
participants

The question remains how the optimal policy for a central bank that is learning about

Phillips curve parameters would change if forward-looking market participants also learn in

the same manner. Given symmetric information and policy commitment to a rule, rational

market participants form the same beliefs about the unknown parameters α and β as the

central bank. The presence of forward-looking expectations adds an expectation channel of

monetary policy transmission. Consequently, the central bank can afford to be less activist

in responding to inflation deviations from target because private sector expectations take

into account future policy action and move towards the inflation target.

Figure 7 provides a comparison of optimal, certainty-equivalent and cautionary rules

when α and β are unknown and forward-looking market participants learn just like the

central bank. The results are presented in nine panels. In the first column of panels prior

beliefs correspond to the benchmark case with Fuhrer’s (1995) estimates and covariance

matrix, while the second and third panel consider scenarios with increased uncertainty as
32For a central bank learning problem that allows the possibility of incomplete learning the reader is

referred to Wieland (2000b).
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Figure 7: Alternative Policies with Unknown Intercept α and Slope β
Prior Belief (a=1.68, b=-0.28) - Different Extent of Forward-Looking Expectations
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in Figure 5. I introduce forward-looking behavior into the analysis in three steps. First, I

allow for forward-looking expectations in the aggregate demand equation, (6), i.e. in terms

of the definition of the real interest rate, while maintaining the assumption of adaptive

expectations in the Phillips curve (first row of panels). Secondly, I consider forward-looking

expectations in the Phillips curve, while maintaining adaptive expectations in the aggregate

demand equation (middle row of panels). The index of inflation persistence γ is set to 0.8

implying a weight of 0.2 on forward-looking expectations. In a third step I consider forward-
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looking expectations, both, in the Phillips curve and in the aggregate demand equation

(bottom row of panels).

Three findings are directly apparent. First, all three policies are less aggressive in their

response to lagged inflation due to the presence of the expectations channel of monetary

policy transmission. Second, the qualitative properties of the optimal rule are the same as

under the case of adaptive expectations depicted in Figure 5. Third, the optimal extent

of experimentation, that is, the difference between the cautionary and the optimal rule,

is somewhat smaller. The intuitive reason is that a change in inflation expectations has

a direct effect on inflation. Thus, the central bank does not need to rely as much on the

nominal interest rate and its uncertain impact on inflation. A further extension would be to

consider learning about the index of inflation persistence γ, which governs the importance

of forward-looking expectations in the Phillips curve. It turns out that the qualitative

properties of optimal policy remain the same. For policy comparisons with learning about

γ and β the interested reader is referred to the earlier working paper version (Wieland

(2003)).

9 Conclusions and extensions

The main conclusion from the preceding analysis is that an inflation-targeting central bank

should not disregard uncertainty about the relationship between unemployment and infla-

tion. Typically, it will be optimal to respond more gradually to inflationary shocks than a

central bank that disregards such uncertainty. However, gradualism can be overdone. In

particular, a central bank that implements Brainard’s recommendation of gradualist policy-

making and disregards dynamic learning effects will respond too cautiously to inflationary

shocks. A central bank that recognizes the tradeoff between current control and experimen-

tation for the sake of reducing uncertainty and improving future policy performance will be

a more aggressive inflation fighter than the central bank that implements Brainard’s rec-

ommendation myopically. However, this central bank will still act more gradually than one

that disregards parameter uncertainty. Exceptions to this rule arise only when uncertainty
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is very high and at the same time inflation close to target.

The preceding analysis can be extended along several dimensions. Some of these

extensions are straightforward while others are interesting avenues for future research. The

remainder of this section discusses four such extensions.

Flexible inflation targeting

So far, the paper has studied policy rules for a strictly inflation targeting central bank.

However, the framework developed in this paper carries over to flexible inflation targeting

with a loss function that includes deviations of unemployment from its natural rate:

L(πt) = Et−1

[
(πt − π∗)2 + ω(ut − u∗)2)

]
(43)

The unemployment stabilization objective introduces an alternative motive for the central

bank to respond gradually to inflationary shocks. The optimal interest rate rule in the

static model under certainty with rational expectations then corresponds to:

it = u∗ + π∗ − (β2 + ωγ2)−1(βγ − ωγ2)(πt−1 − π∗) (44)

For ω = 0 this rule simplifies to the optimal rule under strict inflation targeting, equation

(14). A central bank that assigns a positive weight ω to unemployment deviations will

respond less aggressively to inflation deviations from target. As a result, inflation will

be expected to return more gradually to the target following a shock. Policy rules under

uncertainty can be computed in the same manner as for strict inflation targeting. However,

the cautionary rule, which is optimal in the static version of the model without learning,

can only be computed by numerical methods due to the non-normal distribution of u∗. One

can show that the qualitative properties of the optimal rule under strict inflation targeting

will survive under flexible inflation targeting, but of course, quantitative results will differ.

Optimal policy under discretion

Having considered policy choices for a central bank that is able to commit to a specific

rule, it is of interest to explore optimal policy under discretion. Under discretion, the central
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bank will optimize policy taking private sector expectations as given. The private sector will

try to minimize expectational errors taking the central bank’s response to private sector

expectations as given. The main purpose of Clarke et al. (1999) is to compare optimal

policy under discretion and commitment. However, they assume that the parameters of the

economy are known with certainty. The optimal policy under discretion may be derived

as follows. First, one determines the interest rate that minimizes the central bank’s loss

function (4) treating the private sector agents’ expectation of the interest rate, iet , and thus

their inflation expectation πe
t , as constant and independent of monetary policy. With known

parameters this corresponds to:

it = −(β)−1(γπt−1 + (1− γβ)πe
t − βu∗ − π∗) (45)

Private sector agents set iet and thus πe
t to minimize forecasts errors taking the central

bank’s response as given. The rational expectation of inflation taking (45) as given

corresponds to the inflation target π∗. The nominal interest rate in this Nash equilibrium is

equivalent to the interest rate rule under commitment derived in (14). Differences between

optimal policy under discretion and commitment arise once a policy tradeoff is introduced,

such as the tradeoff between inflation and unemployment in the case of flexible inflation

targeting under certainty, or the tradeoff between the expected inflation deviation from

target and its conditional variance under parameter uncertainty as in section 3 of this

paper. The cautionary policy under discretion can be derived analytically following the

procedure suggested here. The computation of the optimal policy under discretion in the

dynamic model with learning poses an additional complication of the numerical analysis

that would be an interesting problem to address in future research.33

Demand uncertainty

While studying the implications of uncertainty about the relationship between unem-

ployment and inflation in much detail, the remainder of the model has been treated as
33Such an analysis would be related to the theoretical framework developed by Nyarko (1998).
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known with certainty. An extension would allow for uncertainty due to random shocks and

imprecisely estimated parameters in the Okun’s law and aggregate demand relationships as

follows:

ut = φqt + eu
t (46)

qt = λ(it − πe
t ) + eq

t . (47)

Beliefs concerning φ and λ may then be characterized by normal distributions N(p, vp)

and N(l, vl). The presence of the random shocks eu
t and eq

t would render estimation of φ

and λ nontrivial. Uncertainty regarding these parameter estimates would further increase

the component of inflation uncertainty that is influenced by monetary policy. Thus, it

would enhance the motive for caution and widen the wedge between certainty-equivalent

and cautionary policy rules. Increased parameter uncertainty will also tend to strengthen

the incentive for experimentation and consequently the difference between optimal and

cautionary rules. The demand-side shocks, however, imply some random variation in

output and unemployment that will improve the estimates of the parameters of the

inflation equation and will tend to reduce the incentive for experimentation. It is possible

to derive the cautionary policy rule for the case when the Phillips curve parameters as

well as φ and λ are imprecisely estimated, but the curse of dimensionality prevents the

numerical analysis of optimal learning treating all these parameters as jointly unknown.

Nevertheless, the techniques presented in this paper can be used to derive optimal policy

rules under uncertainty about φ and λ separately.

Asymmetric information and heterogenous beliefs

A key assumption maintained throughout this paper is that the central bank and

forward-looking market participants have the same information set available when mak-

ing decisions. As a consequence of this assumption, agents and the central bank update

their beliefs regarding the parameters of the inflation equation (α, β, γ) in the same manner.

In practice, it is reasonable to assume that the central bank has an informational advantage
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compared to the public. This is more likely with regard to current estimates of the state of

the economy and short-horizon forecasts than with regard to fundamental issues concerning

the structure of the economy. Heterogenous beliefs about the parameters of the economy

are more likely to arise from differences between agents and central banks in their priors on

reasonable parameter values or their view regarding the appropriate structural model.

It is straightforward to introduce an informational advantage of the central bank in

terms of an advance signal st about the inflation shock et into the model of this paper.

The optimal policy rule will then include a policy response to this signal very much like

the policy response to lagged inflation. The private sector’s rational expectation of this

component of the interest rate rule will be equal to zero. Thus, market participants will

only be able to predict the component of the policy rule that responds to lagged inflation.

Since the signal st does not help in estimating the Phillips curve parameters, the updating

equations for beliefs will remain the same for the central bank and the private sector.

The possibility of heterogenous beliefs due to differences in priors or in the reference

model represents a particularly interesting area for future research. One difficulty in this

regard is that one will need to keep track of the central bank’s and market participants’

beliefs separately. This will substantially increase the state space of the optimal learning

problem. Nevertheless, it should be feasible to study a problem with one unknown parameter

and two sets of alternative beliefs using the techniques developed in this paper.

46



Appendix: The Numerical Dynamic Programming Algorithm

The algorithm used in this paper computes the value function and stationary optimal
policy by iterating over the Bellman equation, which defines the following contraction map-
ping:

TW =
Min

i

[
L(π, i, θ) + δ

∫
W (π′, i, θ′)f(π′|π, i, θ)dπ′

]
(48)

where T stands for the functional operator and π and θ are last period’s values of the
inflation rate and the beliefs about the unknown parameters, that is the state variables
of the problem. W (.) is a continuous function defined on the state space. L(.) denotes
the expected current loss. The control variable i corresponds to the central bank’s policy
instrument. π′ is the inflation rate to be realized subsequent the policy action and θ′
refers to the beliefs at the end of the period based on new inflation and unemployment
observations. The relevant transition equations for these state variables are summarized in
(39) and include those for beliefs in (38). f(π′|π, i, θ) is the predictive distribution of the
inflation rate. It is a normal distribution, because the beliefs are normal distributions and
the random shocks are also normally distributed.

Successive application of the operator T will generate a sequence of functions Wn that
will converge to the value function V , if T is a contraction mapping. Note that the space of
continuous bounded functions is a complete and separable metric space in the sup metric
defined as follows:

ρ(Wn,Wn+1) =
Sup
(θ, π)

|Wn(θ, π)−Wn+1(θ, π)| (49)

Standard arguments can be used to show that Blackwell’s sufficiency conditions are satisfied
and T is a contraction mapping in the space of continuous and bounded functions (see for
example Kiefer and Nyarko (1989)) such that:

ρ(TWn+1, TWn) ≤ δρ(Wn+1,Wn) (50)

Thus, T has a unique fixed point V , which is the value function, and a stationary opti-
mal policy H(π, θ) exists. This optimal policy corresponds to the set of controls i, which
minimize the right-hand side of (48) based on the current state (π, θ).

V can be computed by value iteration, meaning successive application of the operator T,
since TnW → V uniformly for any continuous bounded function W . A convenient starting
value W0 is the single period loss function L(.) but alternatively a constant also suffices.
If Wn+1 = TWn, then ρ(Wn+1,Wn) ≤ (Wn,Wn−1) and after iterating ρ(Wn+1+i,Wn+i) ≤
δ1+iρ(Wn,Wn−1). This implies an upper bound on the error in approximating V by Wn:

ρ(V,Wn) ≤
∑

ρ(Wn+1+i,Wn+i) ≤ δ

1− δ
ρ(Wn,Wn−1) (51)

This upper bound can easily be calculated since it only depends on the discount factor and
the distance between the approximations obtained from the last and the preceding iteration.
The time needed for convergence within a maximal error bound can be reduced significantly
by introducing policy iterations in between every value iteration. A policy iteration implies
the application of the following operator:

TP Wn = L(π,Hn(π, θ), θ) + δ

∫
W (π′,Hn(π, θ), θ′)f(π′|π,Hn(π, θ), θ)dπ′ (52)
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where Hn(π, θ) is the approximation of the policy function obtained from the preceding
value iteration n.

The computational algorithm then proceeds as follows: first, compute starting values
W0 for a grid of points in the state space (π, θ) and save them in a table; secondly, calculate
W1 by applying the operator T to W0 and update said table. This second step requires
calculating the minimum in i for each of the grid values of the state variables (π, θ). For
this purpose next period’s expected value is calculated by evaluating the following integral:

∫
W0(π′, u, θ′)f(π′|π, i, θ)dπ′ (53)

The functions W (.) and the updating equations to obtain π′ and θ′ are known functions
and the conditional density of π′ is normal. Thus the integral can be calculated using
Gaussian quadrature and values of W0 from the table, where W (.) is evaluated in between
grid points by linear interpolation.

Given an approximation for this integral the minimization problem on the right-hand
side of the Bellman equation can be solved by standard numerical optimization procedures.
However the search for the minimum turns out to be difficult because there may exist
multiple local minima. As a consequence there may be kinks in the value function and
discontinuities in the optimal policy. Therefore I use a slow but secure optimization
procedure such as golden section search supplemented by a rough initial grid search.
For each value of (θ, π), the minimum in i gives the value of W1() used to update the
table. The maximum of |W1(θ, π) − W0(θ, π)| is used to calculate the upper bound of
the approximation error. Finally, the whole procedure is repeated to obtain W2 and so
on until the difference between two successive approximations is sufficiently small (< 0.5%).

Computation Costs
The numerical dynamic programming problems dealt with in this paper require substan-

tial computational effort largely because of the so-called curse of dimensionality. The largest
problem considered has six state variables. If each of the six state variables is approximated
with a grid of N gridpoints, the integration and optimization procedures described above
have to be carried out N6 times to complete one value iteration. The optimization step is
especially time-consuming because of the existence of multiple local optima.

Several steps have been taken to reduce computation time: (i) the introduction of policy
iterations, which reduce the number of value iterations needed for convergence, and thus
the number of times that the optimization procedure has to be executed; (ii) a convenient
reformulation of the problem allows the reduction of the state space by one state variable,
which means that the integration and optimization steps only have to be carried out N5

times per value iteration;34 (iii) the algorithm is written in FORTRAN in order to reduce
computation time relative to higher-level languages such as MATLAB.

The most time-consuming problems computed in this paper are those with two
unknown parameters. The largest grid used in this case consisted of 10 ∗ 14 ∗ 10 ∗ 36 ∗ 60
gridpoints. In this case, I also used 60-point Gaussian quadrature with respect to the
shock e. Convergence as defined by a 0.5% maximal difference between the two final value
function approximations for these problems was achieved after about 72 hours on a 2.21
GHz AMD Processor with 1.48 GB RAM. Typically convergence required 6 to 8 value
iterations with a declining number of policy iterations (250 or fewer) in between every
value iteration.

34For a discussion of this reformulation see the appendix of Wieland (2000a).
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