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Abstract

Yes, the level of capital gains taxation has high explanatory power. We develop a

micro-founded portfolio-choice model where idiosyncratic return risk and disagree-

ment in expectations on asset returns generate an analytically tractable fat-tailed

Pareto distribution for the top-wealthy. Wealth concentration is dampened by the

degree of capital gains taxation. The model is estimated using Kalman filtering

and provides good out-of-sample forecasts for both levels and dynamics of wealth

concentration in the USA. We show that the tax rate explains historical trends in

wealth inequality precisely, and make predictions about the future evolution.
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One of the oldest debates in economic science is the fundamental question of what

drives economic inequality. Some economists (e.g. Piketty, 2014) see an inherent higher

order at play, suggesting that a trend of increasing wealth concentration is an inbuilt

property of market economies. The answer we propose in this paper is far more mundane.

While in a laissez-faire economy wealth inequality would indeed explode, the distribution

of wealth in modern economies is shaped by the structure of the tax system and in

particular by the taxes on capital gains. As the structure of the tax system is determined

by the policy makers, they can also shape the distribution of wealth. This is of specific

relevance in the light of what US President Donald Trump calls “massive tax cuts”.

The topic of inequality lay dormant for a long time until recently the French economist

Thomas Piketty put the issue back at the forefront of the academic debate by documenting

that after a period of contraction, the concentration of economic resources again increased

in the 1980s. This is notably the case for the stock measure of wealth. Piketty (2014)

focuses on a small group of wealth holders – the top percentiles. For these individuals, the

main source of income is capital income as opposed to labor income, which also implies

a high inequality of the flow measure income. While offering a detailed description of

the issues, little formal explanation for the observed behavior is presented and his future

outlook is of rather speculative nature.

This paper attempts to fill this research gap. We develop a micro-founded model that

is able to forecast the evolution of the top shares of the wealth distribution. We estimate

the model for the US case, which has witnessed a remarkable increase in wealth inequality.

The exogenous variable driving the evolution of wealth inequality dynamics – as suggested

by Piketty (2014) – is the taxation of capital gains. Without redistributive taxation, we

get explosive wealth inequality while higher taxation lowers steady state inequality. In

line with the recent empirical literature we focus on the top tails starting from 1954.

This extents the perspective as compared to other recent papers trying to match the US

evidence, which start from the 1970s (Hubmer et al., 2016; Aoki and Nirei, 2017).

Given the accuracy of the estimated model in terms of out-of-sample forecasts, we also

make forecasts for alternative tax regimes. Remaining at the level of taxation initiated by

the government under President Obama would in fact considerably decrease the degree of

wealth concentration, whereas (“massive”) tax cuts back to the pre-Obama level would

further increase wealth inequality in the USA. In the latter case, concentration has not

yet converged to its new steady state.

Formally, we employ a model of the random-growth class which is analytically tractable
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and shown to exhibit Pareto tails under fairly general conditions (cf. Benhabib et al.,

2011). This type of model usually exhibits transition dynamics that are too slow to

match the empirical evidence (Gabaix et al., 2016). The previous literature in this field

emphasizes the effect of multiplicative idiosyncratic capital income risk as a driver of in-

equality, as opposed to labor income risk, which is additive. We supplement our model

with disagreement about the future returns of financial assets as an additional mecha-

nism to drive the dispersion of wealth, which overcomes the problem of slow convergence

dynamics and enables us to fit the dynamics. Since we center our analysis around eq-

uity trading which is a central part of wealthy-individual portfolios (Saez and Zucman,

2016), we do not include characteristics which are of importance for the left tail of the

distribution (the poor).1

Going beyond pure numerical simulation, we are able to not only quantify the station-

ary distribution but the whole dynamics of the top wealth shares in a closed form manner.

Disagreement, i.e. heterogeneity about future asset prospects, increases inequality while

higher idiosyncratic risk lowers wealth inequality since it is internalized in agents’ portfo-

lio decisions. In terms of dynamics, both higher taxes and a larger disagreement increase

the convergence dynamics. From a policy perspective, this implies that the reduction

of inequality after a tax hike is faster than the increase following a tax cut of the same

magnitude.

The remainder of this work is structured as follows. In Section 1 we provide an

overview of the empirical and theoretical literature on wealth inequality with a focus on

recent papers that attempt to fit the empirical evidence. In the following section we

present the micro-foundations for our formal model and discuss analytically statistical

properties in Section 3. Section 4 uses the model to generate forecasts about the future

evolution of wealth inequality and presents robustness checks. Finally, Section 5 concludes

the paper.

1 Literature

Following the major public debate surrounding the publication of the work of Piketty

(2014), the empirical evidence regarding inequality – especially for the flow measure of

income – has substantially improved. Cross-country evidence is assembled and made

1A non-exhaustive list features entry barriers into financial markets in favor of the wealthy, portfolio
return and risk increasing with wealth (which can be e.g. captured by a utility function with decreasing
relative risk aversion), and inter-generational wealth transmission.
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freely available on the World Income & Wealth Database maintained by the collaborative

effort of many researchers. Despite this effort, the data availability of consistent and long-

run measures of wealth inequality is still highly limited. The database provides long-run

data for the United States of America, France and the United Kingdom. The US data –

important for our paper – was recently updated by Saez and Zucman (2016). 2 A recent

comprehensive survey on the overall empirical evidence regarding wealth inequality is

given in Roine and Waldenström (2015). The discussion about the distribution of wealth

is not only an end in itself, but also contains important policy implications as it impacts on

the conduct of monetary policy (Kaplan et al., 2016), on economic growth (e.g. Clemens

and Heinemann, 2015) and on financial stability (Kumhof et al., 2015).
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Figure 1: Top wealth shares for the USA and selected European countries

Notes: Wealth inequality decreased until the 1980s. While it leveled in Europe, it increased in the USA
afterwards. Left panel includes the UK, France and Sweden, right panel only France and Sweden. Missing
values are interpolated. Data source: wid.world and Lundberg and Waldenström (2017) for Sweden.

Figure 1 presents collected evidence on the top-shares for the USA and the European

Countries – France, Sweden and the UK – in the long run. While it displays an overall

decrease in wealth concentration in all countries until the 1980s, inequality has since

increased. This increase is modest in the European countries, but highly pronounced in

the USA and in particular emerges for the top wealth holders.

Different theoretical models compete in order to explain the observed degree of in-

equality. Usually, models in the Bewley-type tradition are considered in order to discuss

2The data is available at wid.world. For the UK, the latest data update was conducted by Alvaredo
et al. (2017). The quality of the French data (especially from the 1970s onward) was recently substantially
improved by Garbinti et al. (2017). Evidence for Sweden is compiled by Daniel Waldenström and his
collaborators (Lundberg and Waldenström, 2017) and is freely available on his homepage.

wid.world
wid.world
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inequality (Bewley, 1986; Huggett, 1993; Aiyagari, 1994). Yet, it has been formally shown

by Benhabib et al. (2011) that these types of models – built around the notion of additive

idiosyncratic labor income risk – will fail to generate the fat tails in the wealth distribu-

tion and thus match the shares of the top wealth holders. Benhabib et al. (2011) propose

a model with multiplicative idiosyncratic capital income risk in order to replicate the

current state of wealth inequality in the USA. They follow an argument laid out as early

as Wold and Whittle (1957), building on random growth (hence the term random growth

models). Taxation of capital (income) plays a crucial role in these models. Using simu-

lations, Fernholz and Fernholz (2014) show that wealth inequality does explode without

redistribution in a standard model with idiosyncratic investment risk. Thus, a tax that

addresses these multiplicative shocks on capital returns – i.e. the capital gain tax – is

also crucial to understand top dynamics. As documented in Saez and Zucman (2016),

the saving rate increases for the top wealth holders. Accordingly, the prime share of their

income originates from saved wealth rather than labor income (also cf. Piketty, 2014).3

While heterogeneous portfolios are often motivated by different degrees of risk aversion

and marginal propensities to consume, this argument does not hold for the very rich since

they should have a relatively similar portfolio structure. Even if the portfolio structure

would be alike, given the large supply of similar assets within classes this would not

imply that portfolios are identical. But due to heterogeneous individual expectations

about future prospects, agents still hold different positions among asset classes. For that

reason we explicitly motivate heterogeneous portfolios by marginal disagreement on future

returns, of which a considerable degree is documented by Greenwood and Shleifer (2014)

in a survey over six data sets on investor expectations of future stock market returns.

Pfajfar and Santoro (2008, 2010) provide empirical evidence in support of heterogeneous

expectations using survey data on inflation expectations. Additional evidence from the

lab has shown that individuals generally do not perform well when forming expectations

and these expectations are furthermore largely heterogeneous, which is summarized in e.g.

Hommes (2013). Boehl (2017) shows that expectations will be heterogeneous even if a

considerable fraction of traders is super-rational. Recently the heterogeneous expectations

hypothesis has made its way into macroeconomics (Mankiw et al., 2003; Branch, 2004).

Given the new data evidence, similar projects have been undertaken. Most promi-

nently, Kaymak and Poschke (2016) use the evidence for the United States from 1960

to the most present date to present a calibrated model in the Bewley tradition. Using

3The reader is especially referred to figures 8.4 and 8.10 in Piketty (2014) for French and US evidence.
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the modification of Castaneda et al. (2003) and allowing for extreme superstar shocks to

reproduce high levels of income inequality, the authors are able to match the data consid-

erably well. Aiming to identify the contributing factors with a very detailed modeling of

the US-tax system (including income, corporate, and estate taxes as well as the pension

system), the authors argue that the structure of the taxation and transfer system is key

to explaining the evolution of wealth inequality. Hubmer et al. (2016) extend an other-

wise standard Bewley-type model with heterogeneous rates of time preference (Krusell

and Smith, 1998), Pareto tails in the income distribution and idiosyncratic investment

risk (Benhabib et al., 2011). They reproduce wealth inequality dynamics as a result of

substantial tax changes, with a data scope starting from the 1970s. While concentration

has started to increase in this period, this omits the relatively stable period of the 1960s

and the period of decreasing wealth concentration in the 1970s.4 They conclude that the

substantial increase in income inequality, the change in labor share, the gap between the

interest rate and the growth rate r > g (Piketty, 2014) all fall short of explaining these

dynamics.5

A different approach is presented in Aoki and Nirei (2017), featuring a rich model in

continuous time. In line with empirical evidence and due to idiosyncratic firm shocks

the emerging stationary distribution of firms is given by Zipf’s law.6 The firm’s returns

translate into income for private households, implying a realistic distribution of both

income and wealth for private households. Combining this framework with a set of tax

rates they are able to match both the dynamics and the state of inequality in the USA.

Again, the authors focus on the data from the 1970s to the most recent years. Cao and Luo

(2017) introduce idiosyncratic return risk into an otherwise standard neoclassical growth

model to account for US wealth inequality and also show that the latter is accompanied by

increasing capital-output-ratios and decreasing labor shares. In contrast to their work, our

paper focusses on the distributional impact on taxation and does not make a statement

about the macroeconomic impact of the wealth tax or even its optimal level.7

4Although ex-ante heterogeneous agents with heterogeneous time preference rates are a technical
vehicle that can replicate wealth inequality, we would argue that it does not entirely convince as the
empirical driver of concentration processes.

5In the core, Piketty argues that wealth inequality will not converge as long as the rate of interest r
is larger than growth rate of labor income g. A detailed formal and critical discussion of this argument
is presented in Fischer (2017).

6The latter is a Power-law with an exponent α = 1.
7Judd (1985) shows that in standard models the optimal tax on the stock value of wealth is zero. It is

well-known that in Bewley-type models this result fails to hold and optimal taxes need to be positive in
order to counteract excessive savings (Aiyagari, 1995). More recent contributions discussing the welfare
impact in both the state and the transition of wealth taxes in the broader sense are e.g. Castaneda et al.
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2 Model

We assume an economy with a very large number of individuals indexed by i. In line with

the standard literature we assume that time is discrete.8 Their only income consists of

investment returns and they are free to choose between a risk-free asset paying a constant

gross return of R and a continuum of ex-ante identical risky assets of which each pays

an idiosyncratic, stochastic dividend di,t every period t. To maximize their intertemporal

consumption over an infinite time horizon the agents accumulate wealth wi,t. Hence, each

agent i faces the question of which amount ci,t to consume and which amount xi,t = zi,twi,t

of the risky asset to purchase. In this case zi,t relates the demand for risky assets as a

share of individual wealth wi,t. As pointed out earlier, such a model provides a realistic

representation for the behavior of wealthy agents, but – in the absence of features such as

borrowing constraints and labor income – naturally falls short in the context of the lower

50% share of wealth holders. Since we aim to explain the dynamics of top-shares such

simplification is justifiable because, trivially, the wealth share of the bottom (1−x)% can

be seen as the residual wealth not owned by the top x%.

Assuming log-preferences, the individual problem is then given by

max
c,z

Et

∞∑
t=0

βtt ln ci,t

subject to the two constraints

wi,t = (R + [di,t + pt −Rpt−1]zi,t−1) si,t−1(1− τ)wi,t−1, (1)

ci,t =(1− si,t)wi,t. (2)

Here we denote by βt = β + εβt the intertemporal discount rate with an iid. zero-mean

preference shock and by si,t the savings rate. pt is the price for an asset of the class

of risky assets in t and di,t = d + εdi,t its dividend with an idiosyncratic stochastic term

εdi,t ∼ N(0, σdt ) where σdt = σd+ε
d
t is again subject to an iid. time-varying aggregate shock.9

The value τ captures a tax on the stock level of wealth.10 We want to assume that our

(2003), Domeij and Heathcote (2004), and Cagetti and Nardi (2009).
8Note that in order to find the cross-sectional distribution using the Fokker-Planck equation (cf.

Section 3) we have to transfer to a continuous time approach. Given the discrete nature of data, in our
empirical application (Section 4) we afterwards return to a discrete time setting.

9Since those assets are ex-ante identical, their price is likewise the same.
10Note that in the empirical part it is very important that taxes vary in time. For the sake of readability
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taxation is a redistributive transfer towards the bottom shares of society. Given that

we model the shares of the top wealthy, any positive lump-sum transfers are negligible.

The above problem does not directly entail a closed form solution, but can be separated

into two stages that both are relatively standard in the literature. Let us first solve the

consumption problem.

Levhari and Srinivasan (1969) show that for log-utility, which is a particular case

of Constant Relative Risk Aversion (CRRA) preferences, in equilibrium agents consume

1 − βt of their wealth at the end of each period, i.e. si,t = βt ∀i, t.11 It is important to

point out that this result holds despite the tax rate. Due to the exact offsetting of income

and substitution effects for log-utility the savings rate is not distorted by the tax rate.12

Note that the assumption of CRRA also explicitly avoids inequality dynamics induced by

a different marginal propensity to consume. Thus, the law of motion for each individual’s

wealth follows

wi,t = (1− τ)βtR
z
i,t(zi,t−1)wt−1, (3)

for which Rz
i,t(zi,t−1) summarizes the individuals gross return on investment.

For the second stage, in which we solve for the optimal demand for risky asset xi,t, let

us use Equation (1) to rewrite the maximization problem as

max
z
Et

∞∑
k=0

βt+k
t+k ln{(1− βt+kwi,t+k} s.t. wi,t = (1− τ)βtR

z
i,t(zi,t−1)wi,t−1∀t ∈ N

which is equivalent to

max
z
Et

∞∑
k=0

βt+k
t+k ln

{
(1− βt+k)βt+kwi,t(1− τ)k

k∏
l=0

Rz
i,t+l(zi,t+l−1)

}
.

Due to the logarithmic laws the term ln{
∏k

l=0 R
z
i,t+l(zt+l−1)} can be separated and is the

only part that depends on zt. Since we can rewrite
∏k

l=0R
z
i,t+l(zi,t+l−1) = Rz

i,t(zi,t−1)
∏k

l=1R
z
i,t+l(zi,t+l−1)

we, however, suppress the time index in this section.
11 Levhari and Srinivasan (1969) derive a more general result for CRRA utility (u(c) = c1−γ

1−γ ) and

iid. returns. Depending on whether income (γ > 1) or substitution effects (0 < γ < 1) dominate,
individuals adjust their savings taking into account the risky savings technology. The special case of
perfectly offsetting income and substitution effects (γ = 1) assumed here, implies that the nature of the
stochastic returns has no impact on the savings decision.

12The interested reader is also referred to Lansing (1999), who shows that the seminal result of a zero
optimal tax rate as proposed in Judd (1985) fails to hold with log-utility. For a more recent and general
approach the reader is referred to Straub and Werning (2014).
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this portfolio problem can be well-approximated by mean-variance maximization, as laid

out in Pulley (1983). The optimal demand for the risky asset xi,t is then, up to a second

order approximation, given by

xi,t = zi,twi,t = (Et[dt+1 + pt+1]−Rpt)wi,t/σdt
2
. (4)

Note that – identical to the optimal consumption plan – the portfolio structure is inde-

pendent of the wealth tax. As presented in Stiglitz (1969) for Constant Relative Risk

Aversion preferences – of which the assumed log-utility is a special case – wealth taxation

does not lead to a restructuring of the portfolio.

Let us assume that return expectations are heterogeneous and each agent’s expectation

is a draw from the normal distribution around the rational expectation of future returns.

Thus, the rational expectation operator E is replaced with a noisy individual expectation

operator Êi,t, giving

Êi,t[dt+1 + pt+1] = d+ Etpt+1 + εEi,t, εEi,t ∼ N(0, σEt ),

where σEt = σE + εσt as well can be subject to the iid. time-varying aggregated news shock

εσt .

Assume furthermore that no single person is rich enough or has an εEi,t large enough

to influence the price.13 Market clearing requires
∑

i xi,t = Xt, with Xt being the total

supply of the risky asset. Without loss of generality we can fix supply and normalize

Xt = 1 to unity for all periods.

Keeping this in mind and aggregating over Equation (1) and (4) yields

pt = R−1(Etpt+1 + dt+1 − σdt
2
W−1
t ) (5)

Wt = β(RWt−1 + dt + pt −Rpt−1), (6)

which is the law of motion for prices and aggregated wealth Wt. Note that for the station-

arity of aggregate wealth redistribution of tax proceedings is required. If this were not

the case, in the long run all private wealth would be transferred to the government. If we

assume that all variables are detrend, due to the law of large numbers idiosyncratic dis-

turbances level out and aggregate wealth Wt = W is constant in the absence of aggregate

13This is indeed satisfied by the law of large numbers. The additional advantage of this assumption is,
without loss of generality, that we can provide analytic results for the law of motion of individual wealth,
aggregated wealth, and prices.
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shocks. The values of prices and aggregated wealth thus reflect the detrend steady growth

path.14 Then, we can also normalize the price to unity without explicitly accounting for

market clearing. The steady state versions of (5) and (6) are

σ2
d/W = d+ 1−R (7)

W (β−1 −R) = d+ 1−R. (8)

This implies that, given the normalization of prices,

W =
σd√

β−1 −R
(9)

d+ 1−R =
√
β−1 −Rσd. (10)

Plugging Equation (4) into Equation (1), integrating individual forecast errors and setting

prices to the steady state yields

wi,t = βt
{
R +

(
d+ 1 + εdi,t −R

) (
d+ εEi,t + 1−R

)
σ−2
d

}
(1− τ)wi,t−1. (11)

which together with Equation (10) and some algebra can be written as the law of motion

(LOM) for individual wealth

wi,t = βt

{
β−1
t +

√
β−1
t −R(εdi,t + εEi,t)/σ

d
t + εdi,tε

E
i,tσ

d
t

−2
}

(1− τ)wi,t−1.

We use annual data, so let β = 0.95. For realistic values of the mean real interest rate R

we have
√
β−1 −R ≈ 0 to be negligibly small.15 After defining γt ≡ βt

σE
t

σd
t

and εi,t ≡ εdi,tε
E
i,t

to be the product of two independent random variables that follow a standard normal

distribution, the final law of motion can be further simplified to

wi,t = (1 + γtεi,t) (1− τt)wi,t−1,

γt now contains the aggregate shocks εβt , εdt and εσt and the expected value γ remains as

14This assumption implies that all growth in aggregate wealth can be attributed to some uniform
exogenous growth rate. Note that the latter does not distort distributional properties.

15Note that a positive demand for the risky assets requires R < 1 +d. Stationarity of aggregate wealth
furthermore demands for R < β−1 < 1 + d i.e.,

√
β−1 −R > 0 but small. Moreover, the variance of εEi,t

is already quite minor. Rewriting εdi,t in terms of a standard normal reveals that the term is relatively
small.
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the only free parameter of our model.

3 Representation in Closed Form

This section aims to enrich our understanding of the process that generates the wealth

distribution by finding a closed form solution for the stationary distribution as well as for

the transition dynamics. In order to do so, we have to overcome some technical obstacles.

For better readability we will omit the aggregate shocks until the end of the section as

they do not have an impact on the shape of the distribution.

3.1 Cross-sectional distribution

The portfolio returns, a product of two standard normal variables, follow a so-called

product-normal distribution. To obtain a closed form solution, we have to transfer this

distribution to another distribution that can be handled analytically.

Proposition 1. The first three moments of the product normal distribution and the

Laplace distribution with shape parameter of λ =
√

0.5 are equal.

Proof. See Appendix A. �

The Laplace distribution is very handy in our context for identifying a closed-form

solution. The individual law of motion (LOM) has to be rewritten in continuous time in

order to solve the Fokker-Planck equations which allows us to identify the cross-sectional

distribution in terms of the free parameters γ and τ . It then reads as

dwi = −τwidt+ (1− τ)γwidNP, (12)

for which NP is the noise following the product-normal distribution. In order to retrieve a

closed-form solution we transform this to the Laplace distribution using the scaling factor

λ, which we just introduced. The equation thus reads

dwi = −τ
λ
widt+

1

λ
(1− τ)γwidL, (13)

for which L signifies Laplace distributed noise.
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Proposition 2. Using Itô’s lemma as a second-order approximation and solving the

Fokker-Planck equation, the right tails of the cross-sectional distribution (the top wealth

holders) are described by a Pareto distribution with a tail parameter α,

α = 1 +

√
2τ

γ2(1− τ)2
. (14)

Proof. Let us define the log of wealth ŵi,t = log(wi,t) and apply Itô’s lemma as a second-

order approximation. Thus the equation reads

dŵi ≈
(
−τ
λ
− 0.5

γ2

λ2
(1− τ)2

)
dt+

1

λ
(1− τ)γdL = −µdt+ δdL,

with a diffusion term δ ≡ 1
λ
(1 − τ)γ and a drift µ ≡ τ

λ
+ 0.5γ

2

λ2
(1 − τ)2 = τ

λ
+ 0.5δ2.

As shown in Toda (2012), the Laplace distribution with unit standard deviation can be

modeled by

dL = −λ sign(L)dt+ dB

with B being the standard Brownian motion and sign(x) = x
|x| representing the sign

function. In essence, this is a Brownian motion which reverts to its zero mean both

in the positive and the negative domain. Thus, the noise in the returns ε before taxes

(approximately) follows a Laplace distribution with a zero mean

f(ε) =
0.5

γλ
exp

(
− |ε|
γλ

)
,

which can be understood as a symmetric double exponential distribution. This result will

also be of use in Proposition 7. If we ignore the fat-tail properties in the returns – induced

by the mean reversion – we can model the wealth evolution of the wealthiest individuals

by

dŵi = −µdt+ δdB, ŵi,t >> 0. (15)

The cross-sectional distribution can be found by solving the so-called Fokker-Planck equa-

tion16

∂f(ŵ, t)

∂t
= − ∂

∂ŵ
(µf(ŵ, t)) + 0.5

∂2

∂ŵ2

(
δ2f(ŵ, t)

)
.

We first consider the stationary distribution (∂f(ŵ,t)
∂t

!
= 0). The solution is well-known

16The latter is frequently referred to as Kolmogorov forward equation. The terms can, however, be
used interchangeably.
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(Karlin and Taylor, 1981, p. 221) and given by17

f(ŵ) = C exp(−αŵ), (16)

for ŵ > ŵmin = ln(wmin) with an integration constant of C = wαminα to ensure
∫∞
ŵmin

f(ŵ)dŵ =

1. For our case we have

α =
2µ

δ2
= 1 +

√
2τ

γ2(1− τ)2
. (17)

It is easy to transfer the exponential distribution to a Pareto distribution. In fact,

if ŵ follows the described exponential distribution, wealth w = exp(ŵ) is given by the

probability density function

lim
w→∞

f(w) ∼ w−α−1.

�

It is important to acknowledge the necessary conditions for this result to emerge. It

requires both (i) mean reversion (µ > 0) and (ii) a positive non-zero reflecting barrier

(ŵmin > 0). Note that we do not model the latter explicitly. Yet, one could consider

that the overall proceedings of the wealth tax are redistributed to all individuals in an

equivalent lump-sum manner. For a given tax rate τ and a stationary average wealth w̄

the latter would amount to τw̄. The two assumptions also have an important economic

implication. Mean reversion is achieved by a positive capital tax rate that counteracts the

multiplicative stochastic noise of the capital gains. The second condition also ensures that

the capital tax is not a net loss for the private households. It moreover ensures overall

stationarity of private wealth.

In fact, the complete distribution is characterized by the single value α. Thus, other

measures regarding inequality can be derived starting from this assumption.

Proposition 3. The stationary (t → ∞) share sx(τ,∞) of the top x (e.g. the top 1%

implying x = 0.01) wealth holders is given by

sx(τ,∞) = x1−1/α, (18)

for which α, as above, is implicitly a function of taxes τ and γ.

17A more formal derivation using Laplace-transforms is presented in Appendix B, also determining the
average convergence speed.
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Proof. The result is well known and can be derived by computing the closed form value

of the Lorenz curve given by L(F ) = 1− (1−F )1−1/α and then calculating sx = 1−L(1−
x). �

The same rationale can also be used to derive a closed form expression for the Gini

coefficient. In general a high tail coefficient α is accompanied by low inequality.18 This

very neat result has some strong implications for the asymptotic behavior. First of all,

without taxation τ = 0 the tail-coefficient is α = 1, identical to Zipf’s law. In fact, the Gini

coefficient then takes the value of Gini(w) = 1 and sx(τ) = 1 for all x ∈ (0, 1], implying

total inequality. Thus, in a laissez-faire economy without government intervention, there

is no finite level of inequality. In general, inequality increases (α decreases) with γ while

decreasing with taxation τ . For the extreme case of τ → 1 - which can be thought of as

a completely egalitarian society - we would have α → ∞, and thus have a Lorenz-curve

identical to the 45-degree line and thus no inequality at all.

Note that our proof heavily relies on second-order approximations. This is, however,

not problematic for realistic values of α < 2, for which only the first two moments exists.
19

3.2 Convergence dynamics

We can also make a statement about the convergence speed.

Proposition 4. The convergence of the Laplace-transformed pdf (Lf(ŵ, t) = F (s, t)) is

given by

F (s, t)− F (s,∞) ∼ exp(−φt), (19)

with an average convergence speed of

φ = (0.5γ(1− τ)α)2 . (20)

18The closed-form value for the Gini coefficient is given by Gini(w) = 1
2α−1 and decreasing with α for

the realistic case of α > 1. Note that then it also holds that ∂
∂αs

x(τ,∞) < 0.
19The Fokker-Planck equation is in turn also a second-order approximation to the more general Master

equation while the use of Itô’s lemma is also a second-order approximation. For noise generated by a
Brownian motion (rather than the product-normal distribution) it would still hold exactly. As a result
only degrees of concentration of s0.01 > s0.01(α = 2) ≈ 10.6% can be modelled reliably using the closed-
form solutions.
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For a one period gap it is given by

F (s, t) = F (s, t− 1) exp(−φ) + F (s,∞)(1− exp(−φ)), (21)

Proof. See Appendix B. �

This implies a half-life of t0.5 = ln(2)
φ

. In fact the effective taxation τ not only decreases

steady-state inequality, but also increases the speed of convergence to the latter. This also

means that there is an asymmetry in the convergence. The increase of inequality for low

taxes is slower than the decrease after high tax rates. Thus, the positive message for the

policy maker is that it is faster to come down to lower inequality rather than to increase

the level of inequality. Finally, we use this general result in order to make an approximate

statement about the evolution of top-shares which are the focus of the recent empirical

literature and thus also take in a central position in this paper.

3.3 Estimation model

Note that so far we ignored the time dimension. Let us assume that the value of γ is

constant in time. Yet, due to policy changes the tax rate τt is varying in time. Thus, not

only the stationary level of inequality as modeled by the Pareto-tail αt varies in time t,

but so does the convergence speed φt.

Proposition 5. Ignoring aggregated shocks, the top-shares approximately evolve accord-

ing to an autoregressive process of first-order with

sxt = ρts
x
t−1 + (1− ρt)sx(τt,∞), (22)

and ρt = exp(−φt) for the average convergence speed φt = φ(τt) as defined in Equation

(20).

Hence, the share owned by the fraction x of the population is a linear combination

of the last period’s share and the share of the top x of the stationary distribution given

the tax rate τt at each time t. Let us now reintroduce the aggregated shocks, which are

important for the Kalman filtering. The cross-sectional shocks σEi and σdi – indicated by

the subscript i – drive the cross-sectional distribution in the first place and are represented

through the transformations above. Aggregated shocks affect the behavior of all agents

equally and hence can introduce aggregate temporary fluctuations to our law of motion

for top shares. We summarize these in a composite shock term εst .
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Proposition 6. As a first-order approximation around the stochastic steady state and

using the central limit theorem, the law of motion including aggregate time-varying shocks

can be summarized by

sxt = ρts
x
t−1 + (1− ρt)sx(τt,∞) + εst (23)

εst ∼ N (0, σs). (24)

Proof. Let us write out that sxt (γ(εβt , ε
d
t , ε

σ
t ), τt)) is a function of the three aggregate un-

observed iid. shocks. These shocks operate on the idiosyncratic risk εd, the standard

deviation of disagreement εσ, and the rate of time preference β. Using the multivariate

Taylor approximation around the expected value where all shocks are zero yields

sxt (γ(εβt , ε
d
t , ε

E
t ), τt) ≈ sxt (γ, τt) +

∂sxt
∂γ

∂γ

∂εβt
εβt +

∂sxt
∂γ

∂γ

∂εdt
εdt +

∂sxt
∂γ

∂γ

∂εEt
εEt

for which

εst :=
∂sxt
∂γ

∂γ

∂εβt
εβt +

∂sxt
∂γ

∂γ

∂εdt
εdt +

∂sxt
∂γ

∂γ

∂εEt
εEt

is the sum of zero-mean i.i.d. random variables each multiplied by a constant. Applying

the central limit theorem this is approximately normally distributed and the result in the

proposition follows.

�

3.4 Comparative statics

So far it was assumed that there was a pure substance tax on the stock level of wealth,

which is not in place in the US. Yet, the stock level of wealth is subject to other more

subtle forms of taxation. In particular, for the case of the USA – our empirical application

in the next section – net capital gains are taxed. Of course taxes are only levied on positive

measures – i.e. capital gains – and not losses. We thus have to translate between the

measures.

Proposition 7. The gross-wealth tax τ given a capital gains tax θr can be approximated

by finding a τ such that the expected value of after tax returns from a capital gains tax

and after tax returns of a gross-wealth tax are equal. Gross-wealth taxes are then given

by

τ =
1

2
γλθr. (25)
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Proof. Dropping time subscripts for taxes, the after-tax returns given the capital income

tax θr are

R̄θr = 1 +

(1− θr)γεi,t if εi,t > 0

γεi,t if εi,t ≤ 0.

To use the LOM in Equation (22) we approximate τ given θr by finding a τ such that the

expected value of R̄τ equals the expected value of R̄θr . Then, given that εi,t approximately

follows a Laplace distribution with scale λ =
√

0.5, the expected value E[εi,t|εi,t ≤ 0] is

the mean of an exponential distribution with inverse scale λ, which is again λ. Then

ER̄τ = ER̄θr

E {(1− τ) (1 + γεi,t)} = 1 + γP (εi,t ≤ 0)E[εi,t|εi,t ≤ 0] + (1− θr)γP (εi,t > 0)E[εi,t|εi,t > 0]

1− τ = 1− 0.5γλ+ 0.5(1− θr)γλ

τ =
1

2
θrγλ,

where P (εi,t > 0) denotes the probability that εi,t is positive. �

Finally, our model is fully specified, allowing us to conduct some comparative statics.

To obtain some intuition, let us plug Equation (25) into the closed-form solution from

Equation (22), and for simplicity take (1− τ) ≈ 1. Then

sxt = exp(−φt)sxt−1 + (1− exp(−φt))x1−1/αt ,

with

αt(θr,t) ≈1 +
0.5θr,t
γ

,

φt(θr,t) ≈
1

4
γ2 +

1

4
θr,tγ +

1

16
θ2
r,t,

for which follows that if the system is at the steady state

∂sxt
∂γ

> 0 >
∂sxt
∂θr,t

and
∂|∆sxt |
∂θr,t

,
∂|∆sxt |
∂γ

> 0.

The weight on the most recent value sxt−1 decreases in the transition speed, which depends

positively on taxes θr,t and dispersion γ. This means that in terms of inequality dynamics,

an increase in dispersion γ is a complement to an increase in taxes and will speed up
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dynamics. However, in terms of inequality levels these two have opposing effects: an

increase in taxes θr,t decreases the stationary level of inequality, while a higher value of γ

will increase it.

It is also insightful to keep in mind the definition of γ = β σ
E

σd to decompose the

effects. We have a higher degree of wealth inequality (as measured by top shares) for

high disagreement σE. Meanwhile – and somewhat surprisingly – wealth concentration

decreases for high idiosyncratic risk σd. The latter is due to the fact that individuals

incorporate risk into their portfolio decision by increasing the share of risk-free assets.

Finally, the inequality increases with the discount factor β which for the assumed case

of log-utility is equal to the savings rate. Thus, high savings are accompanied by higher

degrees of wealth inequality. In terms of dynamics, both the higher savings rates and

higher expectation disagreement increases the dynamics, whereas higher idiosyncratic

risk slows down the dynamics.

4 Kalman Filtering

In this section we use the Kalman Filter to estimate the model specified in Equation (23)

to the empirical top-wealth shares of the US economy, while feeding-in only the tax data.

For robustness, we then perform out-of-sample forecasts. As a last step we forecast the

top shares given different scenarios of taxation.

For the top-wealth data we rely on the recent study of Saez and Zucman (2016).20

The authors incorporate an estimate of offshore wealth when constructing the series in

order to capture tax evasion in their top wealth inequality data, which is of particular

relevance given our results. The topic is also treated in detail in Alstadsaeter et al. (2017).

Note that if tax evasion would be proportional to the level of taxation, this would imply

a decrease in the wealth-income ratio when taxes are high, which can not be confirmed

by the data from Piketty and Zucman (2014). The data on top-capital gains tax in use

is collected by the Tax Policy Center.21 The tax series is then transformed as outlined

in Proposition 7. We start our investigation in the year 1954 since from this year on

capital gains tax data is available, and end it in 2012, for which the last observation

on the top-0.1% is obtainable. This means that the years 2013 and 2014, for which the

20The data is freely available on the homepage http://wid.world, featuring long-run time series measur-
ing inequality for several countries.

21At the time of writing, the data can be downloaded at
http://www.taxpolicycenter.org/statistics/historical-capital-gains-and-taxes.

http://wid.world
http://www.taxpolicycenter.org/statistics/historical-capital-gains-and-taxes
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US-government under Barack Obama increased the capital gains taxes up to 25.1% is

not included in our analysis. We, however, make use of the more recent values of 23.8%

(2017) for our predictions further below.

The Kalman filter dates back to Kalman et al. (1960) and is a recursive Bayesian

filter that takes into account the measurement errors in the data. Given the model and

values of its parameters (for the one dimensional filter this is γ and the exogenous noise

σs) the filter finds the series of exogenous shocks that is most likely given the data and

the standard deviation of exogenous shocks. The input of the tax series is treated as

a time-variant parameter. Since the filter returns the likelihood of the data it can be

used to estimate the model by choosing parameter values that maximize the likelihood.

The respective filtered series is then an estimate of the true unobservable series, whereas

the estimated standard deviation can be considered as a measure-of-fit for the model. A

high standard deviation implies that the model is not a good description of reality, since

driving factors are merely exogenous and vice versa. The technical details are relegated

to Online Appendix D. Saez and Zucman (2016) indicate a value of measurement errors

for the time series of top-wealth between 2% and 3% to be a reasonable estimate. The

choice between these values does not have a quantitative impact, for filtering we use the

more conservative estimate of 3%.

In the United States, individuals generally pay income tax on the net of their capital

gains. There are a considerable number of exemptions, depending on investment duration,

net-worth, and general status. The series in use here represents the maximum tax rate

on returns with positive net capital gains obtained from the US Tax Foundation. This

has the great advantage that it is a tax explicitly and only on capital gains, which are the

focus of our model. Yet, we note that reducing a complicated system of tax progression to

just one number bears the risk of misalignment. Taxes on labor income and inheritance

are ignored since they are beyond the scope of our model.22

In Figure 2, we apply the filter to the 1% top shares of the USA. The corresponding

estimate of γ = β σ
E

σD is γ̂ = 0.3523. The finance literature usually uses a value of σd in the

range from 0.08 to 0.3 (Campbell and Viceira, 2002) on a quarterly basis. Greenwood and

Shleifer (2014) estimate a quarterly standard deviation of return disagreement ranging be-

tween 1% and 4% . The annual discount rate is assumed 0.95. Combining and annualizing

22The latter factor is important for intergenerational mobility and can be captured in a model with
Overlapping Generations (OLG). Note that we argue from the perspective of an infinite horizon economy.
In fact, the inheritance tax is a specific wealth tax that only becomes relevant at specific points in time (the
transition between dynasties marked by the death of the family head). A discussion of the interconnection
between demographics and wealth inequality is e.g. given in Benhabib et al. (2014).
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Figure 2: The filtered time series of the top-
1% together with the empirical data (dots)
and the tax series.
Notes: The dashed line represents the stationary
share that is immediately implied by the current
tax rate. Input and output data from year 1954 –
2013.
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Figure 3: Out-of-sample testing using the
time series from years 1954 – 1998.
Notes: Filtered series until year 1998, from then on

the dashed line represents the median of simulations

together with the 95% prediction intervals.

these values suggests that our estimate for γ lies in the reasonable range from about 0.02

to 0.45 and implies furthermore that the standard deviation of agents’ forecasting errors

is yet quite small compared to the standard deviations of returns. Thus, the estimated

value is in line with relatively low disagreement variance as compared to return variance.

The filtered series matches the time series of the data very well, for which the broadly

constant share until the early 1970s is in line with a stationary distribution implied by

the constant tax rate. The dashed line stands for the analytic result of the stationary

cross-sectional distribution implied by the tax rate θr,t at time t, i.e. the share to which

the distribution will converge if time goes to infinity. For this reason the shares of the

stationary distribution jump with each change in the tax rate. The filtered series follows

more slowly and, in line with the data, slowly converges towards the stationary value.

After an increase of capital gains taxes starting in the late 1960s, inequality decreases

until the Reagan period, in which taxes return to the previous level. The levels as well

as the responses to this tax increase are well matched, while simultaneously providing

realistic transition dynamics. The reduction of taxes is accompanied by an immediate

increase in wealth inequality both in the data and predicted by our model. While, after a

short drop, taxes return to their level from the 1950s in the late 1980s, inequality returns

to the same postwar-level in the data as well as in the model. Finally, the tax decreases in

the late 1990s and the early 2000s initiate convergence to a steady state of higher wealth
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inequality that is yet unreached. The estimated standard deviation of the error term,

σ̂s = 0.97%, is relatively small given that our model is considerably parsimonious.

To further assess the robustness of the model we conduct out-of-sample forecasts for

the top 1% share that are shown in Figure 3. We use the data until the year 1998 as the

sample period to estimate γ and σs and then run a batch of 1,000 simulations starting in

1998, while again feeding in the respective time series. The year 1998 is chosen because

it accommodates an ample decrease in capital gains taxation from 29.19% in 1996 via

25.19% in 1997 towards 21.19% in 1998. While dots and solid line represent the empirical

data and the filter respectively, the dashed line depicts the mean of the out-of-sample

predictions with the corresponding 95% interval. While the spike in inequality following

the year 2000 is unexplained by our model, the data reverts to almost perfectly matching

the median convergence path from the mid-2000s onward. Keep in mind that we estimate

a long-run mean value of γ and that fluctuation around this mean are integrated in the

shock term. The early 2000s were shaped by the dotcom bubble. In the logic of our

model, this is captured by a temporary higher disagreement σEt , implying a larger γt and

thus a higher wealth inequality.

In Online Appendix E we discuss in detail how much our results depend on the selection

of the sample period. To summarize, while the last periods in the data are not crucial

for a good fit, the 50s and 60s are important due to the relative stationarity during this

period. This is of notable importance since these periods are omitted in the work of others

discussed earlier (Hubmer et al., 2016; Aoki and Nirei, 2017).

In the following we want to incorporate multiple time series and thus employ a multi-

dimensional filter. We redirect the treatment of the 2-D filter to Online Appendix F and

turn to the 3-D filter right away. Although the upper tail of wealth is often approximated

to follow a Pareto distribution, as discussed in Blanchet et al. (2017), this does not match

the actual distribution precisely. As presented in Figure 5 the local Pareto coefficient

is larger the more we go into the tails of the distribution i.e. for lower values of x.23

A true Pareto distribution however is scale-free and thus exhibits the identical Pareto

coefficient regardless of the level of x. To account for different Pareto coefficients in the

23We compute the local Pareto coefficient using the equation sx = x1−1/α ↔ α = 1/(1 − ln(sx − x)).
Similar evidence, is e.g. reported in Saez and Stantcheva (2016). They show that the local Pareto
coefficient of capital income increases in the tails. Even many years after the initial claim of Pareto
(1896) there is still disagreement about the notion of whether wealth follows a true Pareto distribution
(Clauset et al., 2009; Chan et al., 2017; Vermeulen, 2016). To summarize the debate briefly, the Pareto
distribution is a good approximation which has some pleasant analytic properties, yet fails to match the
data precisely with the limitations pointed out above.
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Figure 4: Local Pareto coefficient for log-
wealth ŵ in time for the model.
Notes: During transition the coefficient increases
for the top shares, after convergence the coefficient
is independent of the level of wealth.
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Figure 5: Local Pareto coefficient for top-
shares x in time for the US evidence.
Notes: The coefficient does not only vary across
time, but also persistently increases towards the
tail.

data our estimation problem is adjusted slightly by allowing to estimate a specific γx for

each different percentile. This also adjusts for the fact that in Proposition 3 the standard

representation of Pareto shares is used, which only holds as an approximation. A summary

of the estimated parameters can be found in Table 1. As expected, the estimates for each

share are almost independent of the number of dimensions of the Kalman Filter.

Table 1: Parameter estimates for the filter using different series of top-shares as input.

Top-shares γ̂1% γ̂0.1% γ̂0.01% σ̂s
1 0.3523 – – 0.97%

1, 0.1 0.3522 0.3160 – 0.85%
1, 0.1, 0.01 0.3695 0.3291 0.3005 0.73%

Notes: The estimated standard errors are also a measure of the goodness of fit. In line with Figure 5 the
value of γ decreases for higher quantiles.

In order to match more extreme tails, the estimated value of γ decreases (cf. Table

1). Put differently, the local Pareto coefficient α(x) increases for more narrow top-shares

x. These differences in γx across shares can be explained well by higher variances in

portfolios, i.e. the very rich have riskier portfolios than the “plain” rich as captured by

higher values of σd and thus lower values of γ. In Appendix C we discuss the (non-

stationary) closed-form solution of the Fokker-Planck equation. It turns out that in the

short run the distribution resembles a log-normal distribution with increasing Pareto
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coefficients in the tails.24 The increase in inequality is slowly transmitted to the fat ends

of the tails. In line with Gabaix et al. (2016), in this type of model the convergence is

slower in the tails. In fact, in the short run for the non-stationary distribution the local

Pareto coefficient increases in the tail for high values of log-wealth ŵ (cf. Figure 4).25

This is in line with the empirical results as presented in Figure 5.
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Figure 6: The filtered time series of the
top-shares together with the empirical data
(dots) and the tax series for three different
top-shares.
Notes: The fit is created using the 3-dimensional
Kalman Filter. Input and output data from year
1954 – 2013.
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Figure 7: Out-of-sample testing using the
time series from years 1954 – 1998 and the
3-dimensional Kalman Filter.
Notes: Filtered series until year 1998, from then on
the dashed lines represent the median of simulations
together with the 95% prediction intervals.

Although we add additional time series to the filter, we do not allow different series

of shocks for each series of data. Hence, all series are subject to the same exogenous

disturbances. In Figure 6 we present the fitted model, while Figure 7 displays out of

sample forecasts, once again starting in the year 1998. It can be seen from the parameter

estimates that the quality of fit as measured by σs is actually increasing with the number

of dimensions, even though with each series 59 new data points are included, but only one

more parameter. Again, the 3-D case matches the percentiles quite well, whereas the top

0.1 and 0.01% are characterized by an even better fit. Moreover, there are some further

insights. Again the spike in inequality following the year 2000 can not be explained well

by the change in taxes only, a result that holds for all three time series of percentiles.

24For a true log-normal distribution the estimated Pareto tail in the tails would diverge limŵ→∞ α̂(ŵ) =
∞.

25The figure is generated using the time-varying solution of the Fokker-Planck equation, as presented
in Appendix C.
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While the decrease in relative wealth owned by the top 1% in the late 1970s and early

1980s is overpredicted by our model, it performs quite well for the top 0.1% and 0.01%. As

above, the out-of-sample predictions suggest that the model explains the data reasonably

well, implying its feasibility long-run forecasting.
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Figure 8: Projections taking the last observation in 2013 as a starting point and feeding
in different tax series. Tax rates were at 15% in 2012, 23.8% in 2017 and 28% in 1980.

Notes: While the stationary level given the current tax rate is not reached before approximately 2025,
moderate changes in the capital income tax have a significant effect on all top-shares. Left: one-
dimensional Filter. Right: 3-dimensional Filter. Calibration as in Table 1.

In Figure 8 (left) we show forecasts given the using the estimated parameters and

different tax regimes. As of 2017 the actual tax rate calculated as above is at 23.8%.

This episode is not included in our series since Saez and Zucman (2016) only provide data

until 2012. An unchanged tax regime would be sufficient to reverse the trend and bring

inequality back to the level of the early 2000s. A further increase to 28%, which is the level

from 1980 would lever the concentration back to its value from the 1990s. In this case the

share of the top 1% would almost fall down to the level currently held by the top 0.1%,

implying a considerable level of redistribution. On the other hand, tax cuts, as currently

suggested, would result in a further increase in wealth inequality compared to the status

quo. Since the data is not yet available we used the 2012-rate for these projections.

The simulations also confirm our analytic result that the decrease in inequality after tax

increases is faster than the ascent of inequality following tax reductions.
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5 Conclusion

The main purpose of this work is to develop a simple, yet micro-founded portfolio selection

model to explain the dynamics of wealth inequality given empirical tax series. Although a

quite straightforward approach, this stands in contrast to the majority of the theoretical

literature on wealth inequality which takes income inequality as a starting point.

We apply this model to the USA, which experienced a recent and substantial increase

in wealth inequality. Due to the parsimonious nature of our model the degree of free-

dom to fit the empirical evidence is very limited. Nevertheless, our model matches the

data surprisingly well, both in levels and also in transition speed. Our analytic results

emphasize that the level and the transition speed of wealth inequality depend crucially

on the degree of capital taxation, which is quantitatively and qualitatively in line with

our results from the filtering process. We conclude that the given tax series have a very

high explanatory power regarding the dynamics of US wealth distribution over the last

60 years.

This also implies that one answer on the policy question on how to influence the

distribution of wealth – and potentially reverse the recent increase in wealth inequality

observed in developed economies – can be given by looking at the tax system. An increase

in capital gains taxes, or alternatively a gross tax on wealth as suggested in Piketty (2014),

will very likely reduce wealth concentration and has the potential to upturn the observed

trends. Our projections predict that, for the USA – continuing on the present path of

capital taxation – the gap between rich and poor is expected to shrink whereas (“massive”)

tax cuts will further increase the degree of wealth concentration.

There are two implications for future research. Although our model fits the data

quite well, there are periods where it falls short of accounting for the data. First, we

consider it important to identify whether the those shortcomings are due to bad tax data,

measurement errors, or to reasons that are exogenous to our model. Second, if these

reasons are exogenous it is crucial to investigate them further.

Further, the quality of the model’s result severely hinges on the quality of the data.

A better availability of data on wealth dispersion at higher frequencies would give bet-

ter means to improve our model and enhance the understanding of the issue of wealth

inequality in the 21st century.
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Pfajfar, D. and E. Santoro (2008). Asymmetries in inflation expectation formation across

demographic groups. University of Cambridge, Faculty of Economics.

Pfajfar, D. and E. Santoro (2010). Heterogeneity, learning and information stickiness in

inflation expectations. Journal of Economic Behavior & Organization 75 (3), 426–444.

Piketty, T. (2014). Capital in the twenty-first century. Boston: Harvard University Press.

Piketty, T. and G. Zucman (2014). Capital is back: Wealth-income ratios in rich countries

1700–2010. The Quarterly Journal of Economics 129 (3), 1255–1310.

Pulley, L. B. (1983). Mean-variance approximations to expected logarithmic utility. Op-

erations Research 31 (4), 685–696.

Roine, J. and D. Waldenström (2015). Chapter 7 - long-run trends in the distribution of

income and wealth. In A. B. Atkinson and F. Bourguignon (Eds.), Handbook of Income

Distribution, Volume 2 of Handbook of Income Distribution, pp. 469 – 592. Elsevier.

Saez, E. and S. Stantcheva (2016). A Simpler Theory of Optimal Capital Taxation. NBER

Working Papers 22664, National Bureau of Economic Research, Inc.

Saez, E. and G. Zucman (2016). Wealth Inequality in the United States since 1913: Evi-

dence from Capitalized Income Tax Data. The Quarterly Journal of Economics 131 (2),

519–578.

Singer, A., Z. Schuss, A. Osipov, and D. Holcman (2008). Partially reflected diffusion.

SIAM Journal on Applied Mathematics 68 (3), 844–868.

Stiglitz, J. E. (1969). The Effects of Income, Wealth, and Capital Gains Taxation on

Risk-Taking. The Quarterly Journal of Economics 83 (2), 263–283.

Straub, L. and I. Werning (2014). Positive Long Run Capital Taxation: Chamley-Judd

Revisited. NBER Working Papers 20441, National Bureau of Economic Research, Inc.



Appendix 30

Toda, A. A. (2012). The double power law in income distribution: Explanations and

evidence. Journal of Economic Behavior & Organization 84 (1), 364 – 381.

Vermeulen, P. (2016). Estimating the Top Tail of the Wealth Distribution. American

Economic Review 106 (5), 646–650.

Wold, H. O. A. and P. Whittle (1957). A model explaining the pareto distribution of

wealth. Econometrica 25 (4), 591–595.

Appendix

A Proof of Proposition 1

The product-normal distribution is treated extensively in Craig (1936). The probability

distribution function is given by

f(zPN) =
1

π
K0 (|zPN |) , (26)

with zPN ≡ ε1ε2 with εi ∼ N(0, 1) and K0 being the modified Bessel-function of the

second kind. The function is symmetric around the mean of zero and exhibits leptokurtic

behavior. It is more appealing to write this using the Moment-Generating Function

(MGF), which in this case is given by

MZPM
(t) =

1√
1− t2

. (27)

Using this it is easy to show that the mean and skewness are zero, while the standard

deviation is given by

SD(zPN) = 1. (28)

This distribution is highly comparable to the Laplace distribution. For a zero-mean the

probability density function of the latter is given by

f(zL) =
1

2λ
exp

(
−|zL|

λ

)
(29)
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for shape parameter λ > 0, having both a mean and a skewness of zero. The standard

deviation of Laplace is

SD(zL) =
√

2λ. (30)

The Laplace distribution is also very appealing as each half takes the form of an expo-

nential function. The moment generating function of the Laplace distribution is

MZL
(t) =

1

1− λ2t2
. (31)

Comparing this with the MGF of the product-normal distribution it becomes obvious

that the two are not identical. In fact, the sum of two product-normal variables follows a

Laplace distribution.26

As a reasonable approximation we replace the product-normal with the Laplace dis-

tribution. To obtain the shape parameter λ that best approximates the standard normal

product distribution we equalize the second order Taylor expansions of both MGFs around

t = 0, which in fact is equivalent to choosing λ to match the first two moments of the

function. This yields

2∑
n=0

∂nMZPM
(0)

n!∂tn
(t− 0)n =

2∑
n=0

∂nMZL
(0)

n!∂tn
(t− 0)n

1 +
t2

2
= 1 + t2λ2

λ =

√
1

2
≈ 0.707. �

B Proof of Proposition 4

The solution to the Fokker-Planck equation can be easily determined using the Laplace

transform into the frequency domain27 given by

L{f(ŵ, t)} ≡ F (s, t) ≡
∫ ∞

0

f(ŵ, t) exp(−sŵ)dŵ. (32)

26Using the MGF it is easy to show that if there are four independently distributed normal shocks with
zero mean Xi ∼ N(0, σi) and we have σ1σ2 = σ3σ4 then X1X2 + X3X4 follows a Laplace distribution
with zero mean and λ = 1.

27This procedure is also employed in Gabaix et al. (2016) and Kasa and Lei (2017) to solve similar
problems.
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The latter is of particular help for solving linear differential equations as the n-th derivative

is given by L{fn(ŵ)} = snF (s, t). For the right tail (index r) the characteristic equation

is given by
∂F (s, t)

∂t
= µsF (s, t) + 0.5δ2s2F (s, t) = Λr(s)F (s, t) (33)

with Λr(s) = µs+ 0.5δ2s2. The stationary solution is found by setting ∂F (s,t)
∂t

!
= 0, leading

to

Λr(s) = 0→ sr = −2µ

δ2
≡ −α. (34)

In this case, the cross-sectional distribution of log wealth ŵ ≡ ln(w) is given by an

exponential distribution, while wealth follows a Pareto distribution. The value α is the

rate parameter of the exponential distribution respectively the Pareto coefficient.

This approach can also be employed to make a statement about the convergence rate.

As our paper only considers the top shares we focus on the right tail of the distribution,

as described by Λr(s). In fact the convergence rate of the n-th moment E(ŵn) is given

by Λr(−n). For the example of the mean it would be

Λr(−1) = −µ+ 0.5δ2 = −τ
λ
. (35)

It is well known that for the Pareto distribution only moments with 0 < n < α exist. For

the parametrization to fit the US wealth distribution we always have α < 2. The average

convergence time - as defined in Gabaix et al. (2016) - emerges for n̄ = 0.5α = µ
δ2

. It is

given by

Λr

(
s = − µ

δ2

)
= −0.5

µ2

δ2
< 0 (36)

Assume that the distribution starts at a stationary distribution F (s, 0). After a shock in

parameters the new stationary distribution is F (s,∞). Solving the differential equation

33, we find the convergence in the frequency domain for some s is given by

F (s, t) = F (s,∞) + [F (s, 0)− F (s,∞)] exp(Λr(s)t). (37)

In this case, we have Λr(s) = −φ = − µ2

2δ2
as the average convergence rate. More generally

we can write it as

F (s, t+ τ) = F (s,∞) + [F (s, t)− F (s,∞)] exp(Λr(s)τ), (38)
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which for our special case of τ = 1 implies

F (s, t+ 1) = F (s,∞) + [F (s, t)− F (s,∞)] exp(Λr(s)). (39)

C Details on the time-dependent cross-sectional dis-

tribution

Figure 9: Log-Cumulative probability density function: Stationary solution and time-
dependent solution

(Singer et al., 2008, p. 853) provide a full solution of the underlying Fokker-Planck

equation in the time domain for some given initial value ŵ0 = 0. We also want to assume

that the reflecting boundary is ŵmin = 0 (i.e. wmin = 1). The solution is given by

f(ŵ, t) =
1√
πt2δ2

exp

(
− ŵ2

2δ2t

)
exp

(
−0.5αŵ − 1

8
α2δ2t

)
+f(ŵ,∞)Φ

(
− ŵ

δ
√
t

+ 0.5αδ
√
t

)
,

(40)

for which f(ŵ,∞) = C exp(−αŵ) describes the long-run stationary solution and Φ is

the cumulative probability density function of the normal distribution. We have C =

αwαmin = α. For small time values t it is Gaussian, finally converging to an exponential
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distribution. In terms of transformed values w = exp(ŵ) this implies a transformation

from log-normal to Pareto.

It is evident that the solution is both a function of time t and the value of ŵ. Es-

sentially, the function slowly fattens out to the tails (cf. figure 9). Thus, the measured

Pareto tail α̂ decrease in time, but increases with the value of ŵ. Technically, it never

converges in the fattest tails (limŵ→∞ f(ŵ, t→∞) 6= f(ŵ,∞)).

Acknowledging that the first part is a normal distribution with zero mean and variance

δ2t (exploding in time) and abbreviating this with f0(ŵ, t) as well as using the definition

of the average convergence speed φ = µ2

2δ2
= 1

8
α2δ2, we can write:

f(ŵ, t) = f0(ŵ, t) exp(−0.5αŵ) exp(−φt) + f(ŵ,∞)Φ

(
− ŵ

δ
√
t

+ 0.5αδ
√
t

)
. (41)

The very last term in the equation related to the normal CPDF captures both the

convergence speed (1 − exp(−φt)) and the non-linearity adjustment for f(ŵ,∞). It is

obvious that this is incorporated in a non-trivial manner. In the empirical application we

choose a simplified non-linearity adjustment not least to keep the estimation feasible.
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ONLINE APPENDIX NOT INTENDED FOR PUB-

LICATION

D Details on Kalman filter and estimation procedure

The most general form of the Kalman filter applies for a Linear Gaussian model specified

by

xt+1 = Atxt + bt +N (0, Qt), (42)

zt = Ctxt + dt +N (0, Rt), (43)

where {zt}T0 is the series of the vector of observables and {xt}T0 is the series of the vectors

of unobservable true variables. At is the state transition matrix between times t and t+ 1

at time t and bt are the state offsets. Ct is the observation matrix and dt the observation

offset, which are here assumed to be the identity matrix or the zero vector respectively. Qt

is the state transition covariance matrix, which is assumed to be filled with σ2
s , since we

assume that the shock series for each dimension is perfectly correlated. Finally, Rt is the

observation covariance matrix that is filled by the variance of the assumed measurement

error, that we will here denote by σ2
m. Taking the two-dimensional model as an example,

the above can be rewritten as

st+1 = diag(ρt)st + (1− ρt)

[
s1%(τt,∞)

s0.1%(τt,∞)

]
+N

(
0,

[
σ2
s σ2

s

σ2
s σ2

s

])
, (44)

ŝt = st +N

(
0,

[
σ2
m σ2

m

σ2
m σ2

m

])
, (45)

where st is the vector of top 1% and top 0.1%-shares that is assumed to be the true at

time t, and ŝt is the vector containing the empirical data/top shares at each point in time.

The (real-time) Kalman Filter is an algorithm designed to estimate P (xt|z0:t), i.e.

the probability of xt at time t given the series of observations until then. The exact

mathematical representation of the Kalman procedure would be too lengthy here and

is relatively standard in time series analysis. We therefore redirect to standard works

such as for instance to (Hamilton, 1994, Chapter 13). Similarly, the (post-processing)

Kalman Smoother is an algorithm designed to estimate P (xt|z0:T−1). Let us define Γ =

(γ1%, γ0.1%, γ0.01%,, σs) to be the set of parameters we seek to estimate. For our estimation
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we aim to find

max
Γ

P (s0:T−1|ŝ0:T−1; Γ). (46)

Let us define L(s0:T−1,Γ) = logP (s0:T−1|ŝ0:T−1; Γ) and estimate Γ by numerically maxi-

mizing

arg max
Γ

Es0:T−1
[L(s0:T−1,Γ)|ŝ0:T−1,Γ]. (47)

The filtered series then represent s0:T−1 as in

P (s0:T−1|ŝ0:T−1,Γ). (48)

In this work we make use of the pykalman package and use standard numerical maximza-

tion procedures provided by numpy for the platform Python.28

E Robustness of the estimates with respect to the

sample period

In Figure 10 the estimates of the two central parameters using the one-dimensional filter

are plotted depending on the sample used for the estimation process. Leaving out the

last 12 periods (top figure) does not have a significant impact on the estimates. However,

excluding too many of the recent periods which display exceptionally high inequality

and fast transition dynamics does decrease the estimate of γ̂. This is well in line with

our comparative statics exercise in Section 3.4. In parallel the standard deviation of

exogenous noise σ̂s decreases when excluding more periods at the end. Thus, these last

episodes increase γ̂ to an extent that overall more exogenous variation σ̂s is necessary to

explain the data. From a quantitative perspective these effects are, however, marginal.

More crucial for our results are the initial periods (bottom figure). Since this period is

characterized by a relatively stable degree of wealth-concentration the value of γ̂ increases

quickly when ignoring the years at the beginning for the estimation. Moreover, the level

of σ̂s increases, indicating a looser fit that requires more exogenous variation. Overall,

both results suggest that γ is probably increasing over time.

28The packages and documentations can be found at https://pykalman.github.io/ and http://www.
numpy.org/.

pykalman
numpy
https://pykalman.github.io/
http://www.numpy.org/
http://www.numpy.org/
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Figure 10: Changes in the estimates of γ̂ and σ̂s when using shorter data samples.

F Two-Dimensional Kalman filter

For completeness we provide the series of the two-dimensional Kalman filter in Figure 11.

These are well in line with the simulations from the main body and merely provided for

completeness.
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0.10
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Tax rate
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Figure 11: Left: Kalman filter using the the series of the top 1% and top 0.1%. Middle:
Out-of-sample forecasts. Right: Projections using different tax series. Estimated values
are provided in Table 1.
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