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Abstract

We propose a simple modification of the time series filter by Hamilton (2018) that yields reliable and

economically meaningful real-time output gap estimates. The original filter relies on 8-quarter-ahead

forecast errors of a simple autoregression of log real GDP. While this approach yields a cyclical

component of GDP that is hardly revised with new incoming data due to the one-sided filtering

approach, it does not cover typical business cycle frequencies evenly, but short business cycles are

muted and medium length business cycles are amplified. Further, the estimated trend is as volatile

as GDP itself and can thus hardly be interpreted as potential GDP. A simple modification that is

based on the mean of 4- to 12-quarter-ahead forecast errors shares the favorable real-time properties

of the Hamilton filter, but leads to a much better coverage of typical business cycle frequencies

and a smooth estimated trend. Based on output growth and inflation forecasts and a comparison to

revised output gap estimates from policy institutions, we find that real-time output gaps based on the

modified Hamilton filter are economically much more meaningful measures of the business cycle

than those based on other simple statistical trend-cycle decomposition techniques such as the HP or

the Bandpass filter.
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1 Introduction

Ever since Orphanides and van Norden (2002) have provided evidence for the poor real-time performance

of commonly used output gap estimation methods, the debate regarding the reliability of output gap

estimates has been vivid.1 Recently, Edge and Rudd (2016) and Champagne et al. (2018) have shown

that the reliability of Federal Reserve and Bank of Canada staff output gap estimates has increased since

the mid-1990s, while the reliability of purely statistical detrending procedures, like, for example, the

Hodrick-Prescott (HP) filter, continues to be poor. In a recent article, Hamilton (2018b) has proposed a

new regression based filter for detrending time series as an alternative to the HP filter. Hamilton proposes

using the 8-quarter forecast error of a projection based on an AR(4) model as the cyclical component of

a macroeconomic time series. The 8-quarter horizon is chosen, because the primary reason for forecast

errors over such a horizon is cyclical factors such as whether a recession occurs over the next two years

rather than large trend changes. The filter produces a stationary cycle for a wide range of time series,

but suffers much less from end-of-sample bias than the HP filter and the other trend-cycle decomposition

methods considered by Orphanides and van Norden (2002), because it is a one-sided filter.2

Hamilton applies the filter to GDP and shows that its cyclical component turns negative during NBER

defined recessions and positive during expansions. Hence, it is a potentially useful measure of the busi-

ness cycle and the approach can possibly solve the long-standing problem of the unreliability of real-time

output gap estimates. Based on spectral density analysis we show, however, that the filter does not cover

typical business cycle frequencies from 6 to 32 quarters evenly. Cycles of lengths between 10 and 20

quarters are amplified substantially relative to longer and shorter cycles. The latter are muted almost

completely. Further, the extracted GDP trend is not smooth, but is as volatile as GDP itself, so that it

cannot be interpreted as measuring potential GDP.

We propose a simple modification of the Hamilton filter that shares its favorable real-time properties,

but leads to a more even coverage of typical business cycle frequencies. Rather than using a fixed 8-

quarter forecast horizon, we take a simple average of forecast errors based on forecast horizons ranging

from 4 to 12 quarters. In this way short, medium and long business cycles are covered more evenly,

so that the original detrending method by Hamilton is turned into one that is useful for both detrending

and business cycle filtering.3 The modified filter further avoids unreasonable spikes and an unreason-

ably large amplitude of the cyclical component of GDP and yields a smooth trend of GDP. Hence, an

interpretation of the trend as potential GDP and of the cyclical component as an output gap is possible.

The modified filter is still centered around the 8-quarter horizon proposed by Hamilton and it is similarly

easy to compute as Hamilton’s original approach.

We analyze the reliability of U.S. output gaps computed with the modified Hamilton filter and com-

pare it to output gaps computed with the original one and the HP and the Bandpass (BP) filter as examples

of commonly used simple statistical trend-cycle decomposition techniques. In particular, we answer two

1Other papers have confirmed the unreliability of real-time output gap estimates produced with common statistical methods

for other economies (see, e.g., Bernhardsen et al., 2005; Cayen and van Norden, 2005; Marcellino and Musso, 2011).
2Hamilton (2018b) argues that that his approach does not only solve the end-of-sample bias of the HP filter, but also two

additional drawbacks: the creation of spurious cycles and an ad hoc smoothing parameter that is at odds with the one chosen by

a formal statistical procedure (see also Baxter and Stockman, 1989; Baxter, 1991; King and Rebelo, 1993; Harvey and Jaeger,

1993; Cogley and M.Nason, 1995; Canova, 1998, for problems with the HP filter).
3The Hamilton filter has already been used in the literature for detrending various macroeconomic variables (see, e.g., Ahn

and Hamilton, 2016; Bordo and Siklos, 2017; López-Salido et al., 2017; Richter et al., 2017; Van Zandweghe, 2017; Danielsson

et al., 2018; Richter et al., 2018). In all these studies the obtained trends and gaps are interpreted economically. For this, an even

coverage of the relevant frequencies seems to be important. Hamilton himself uses the filter to construct a cyclical measure of

global economic activity (Hamilton, 2018a).
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research questions. First, are the different real-time output gap estimates reliable, i.e. are subsequent

revisions small? Second, are they economically meaningful measures of the business cycle? It goes

without saying that a positive answer to the first question needs not necessarily entail a positive answer

to the second one. Fortunately, we find that the answer to both questions is yes for the modified Hamilton

filter.

To evaluate the revision properties, we compute output gaps using real-time data vintages and com-

pare them to those based on revised data. We find that the revisions of output gaps based on the modified

and the original Hamilton filter are small and mainly due to revisions in the underlying data. There

are two reasons for the small revisions. First, the Hamilton filter is primarily a one-sided filter, though

Hamilton recommends to use the whole available sample to estimate the AR(4) parameters. Second,

parameters of univariate AR models for log real GDP are particularly stable in comparison to parameters

of more complicated multivariate models. Contrary to that, HP and BP filter estimates suffer from large

end-point problems due to their two-sided nature and exhibit revisions as large as the gaps themselves.

Evaluating the meaningfulness of output gap estimates and comparing competing output gap esti-

mates in this regard is difficult, because there is no clear benchmark and the true cycle is unknown.

We analyze the meaningfulness of output gaps from different angles to achieve nevertheless convincing

results.

First, we compare real-time output gap estimates to revised output gap estimates of the Federal

Reserve, the Congressional Budget Office, the IMF and the OECD. While there is no true cycle that can

be used as a benchmark, important policy institutions should have at least in retrospect expert knowledge

on the size and length of past business cycle phases. At the very least such expert benchmarks can be

helpful in measuring business cycle characteristics that matter from a practitioner’s perspective. We find

that the correlations of the multiple ex post output gaps from policy institutions with the real-time output

gap based on the modified Hamilton filter are significantly stronger than with those based on the HP or

the BP filter.

Second, we test whether an output gap estimate has predictive content for output growth and inflation.

For example, if output is below potential, this implies that output growth should increase in the future so

that output reverts back to potential. Further, output gaps should have according to Phillips curve models

implications for future inflation.

While we do not find significant differences in output growth forecasting accuracy for the full sample,

the output gap based on the modified Hamilton filter leads to significantly better forecasts compared to

the HP and BP filter when excluding the Great Recession. Evaluating out-of-sample inflation forecasts

by means of a standard Phillips curve forecasting equation manifests the finding in the literature that

no statistically meaningful distinction can be made between differently filtered gap measures (see e.g.

Edge and Rudd, 2016; Champagne et al., 2018; Kamber et al., 2018). This reflects the general difficulty

of beating univariate inflation forecast models with output gap based models (Atkeson and Ohanian,

2001; Fisher et al., 2002; Orphanides and van Norden, 2005; Stock and Watson, 2007, 2008), rather than

output gap measurement problems. It is, however, noteworthy that the modified Hamilton filtered real-

time output gap shows small though insignifcant gains in inflation forecasting accuracy compared to the

HP and BP filtered output gaps.

Overall, we find that output gap estimates based on the modified Hamilton filter have favorable real-

time properties and are meaningful measures of the business cycles with much fewer drawbacks than

those based on other simple statistical trend-cycle decomposition methods.
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2 A Simple Modification of the Hamilton Filter

Hamilton (2018b) proposed using the 8-quarter forecast error of a projection based on an AR(4) model

as the cyclical component of a macroeconomic time series. Hence, to detrend a macroeconomic time

series, yt , the following simple autoregression can be estimated by OLS:

yt = β0 +β1yt−8 +β2yt−9 +β3yt−10 +β4yt−11 +υt . (1)

The cyclical component is given by the residual υ̂t :

υ̂t = yt − β̂0 − β̂1yt−8 − β̂2yt−9 − β̂3yt−10 − β̂4yt−11. (2)

Applied to log quarterly real GDP it is tempting to interpret υ̂t as an output gap. However, Hamilton

(2018b) and Schüler (2018) remark that cycles of 8, 4, 8/3 and 2 quarters are muted and even completely

eliminated for the special case of the difference filter to which the filter reduces when being applied to a

random walk. Hence, typical business cycle frequencies between 6 and 32 quarters (Burns and Mitchell,

1946; Stock and Watson, 1999a) are not covered evenly and especially short business cycles of around

two years lengths are eliminated or considerably dampened.

To get an output gap that covers business cycle frequencies from 6 to 32 quarters more evenly, we

propose a simple modification of the Hamilton filter. Rather than using a fixed 8-quarter horizon, we

propose using an equally weighted average of forecast errors based on 4- to 12-quarter ahead projections

to estimate the output gap, ỹt :

ỹt = 1/9
12

∑
i=4

υ̂t,i, with (3)

υ̂t,i = yt − β̂0,i − β̂1,iyt−i − β̂2,iyt−i−1 − β̂3,iyt−i−2 − β̂4,iyt−i−3. (4)

In the following, we show based on analysis in the frequency domain that this indeed mitigates the

problematic cyclical properties of the original filter.

The spectral density of a covariance stationary process yt at frequency ω ∈ [0,2π] is given by the

Fourier transform of the autocovariance function (see, e.g., Canova, 2011):

SDy(ω) =
1

2π

∞

∑
τ=−∞

ACFy(τ)e−iωτ , (5)

where i =
√
−1 and ω is measured in radians. Further, a time-invariant filter with absolutely summable

weights can be written as a two-sided moving average:

xt =
∞

∑
j=−∞

b jyt− j. (6)

The Power Transfer Function (PTF) |B(ω)|2 =
∣

∣b(e−iω)
∣

∣

2
measures the squared gain of such a linear

filter, i.e. the variance each frequency ω contributes to the filtered series xt compared to its variance

contribution in the original series yt :

SDx(ω) = |B(ω)|2 SDy(ω). (7)
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To filter business cycles the PTF should take a value of 1 for the business cycle frequencies, i.e. cycles

of 6 to 32 quarters length corresponding to radians ω = 2π/6 to ω = 2π/32, and a value of zero for all

other frequencies.

The frequency response for linear filters as in equation (6) is given by:

B(ω) = b0 +
∞

∑
j=−∞, j 6=0

b jcos(ω j). (8)

For the Hamilton filter the weights b−1, . . . ,b−4 are given by the estimated coefficients β̂1, . . . , β̂4 from

equation (2), b0 = 1 and all other weights equal zero. From this the Power Transfer Function can directly

be computed as the square modulus of B(ω).

Figure 1 shows the PTFs for the original and the modified Hamilton filter. The regression coefficients

of the AR(4) process have been computed based on quarterly U.S. log real GDP data from 1947Q1 to

2017Q4. The grey shaded areas indicate cycle lengths of 6 to 32 quarters that are typically associated

with business cycle fluctuations. We plot the PTFs in the standard frequency representation (panel A) as

well as a version that shows the cycle length in quarters on the horizontal axis (panel B) to facilitate the

reading of the figure.4 The standard frequency representation might give the false impression that high

frequency fluctuations are particularly important as these take up more than half of the graph (white area

to the right of the gray shaded area), while in the representation showing the cycle length it is clear that

these are irregular fluctuations, i.e. noise, with little practical relevance.

It is apparent that the original Hamilton filter eliminates business cycles ranging from 6 to 10 quarters

almost completely. Hence, short business cycle frequencies are not present in a Hamilton filtered output

gap. On the other hand, cycles with a duration of 10 to 20 quarters are amplified substantially compared

to short cycles and long cycles of 20 to 32 quarters. Panel C shows PTFs of the Hamilton filter for

different forecast horizons. Short horizons emphasize short business cycles and mute long business

cycles in the output gap, while it is the other way around for long horizons. Hence, taking an average

over different horizons leads to a more even coverage of business cycle frequencies as shown by our

proposed modified filter in panels A and B. Ideally, only frequencies between 6 and 32 quarters would

be present in the output gap. Yet, only the two-sided Bandpass filter is able to get close to such an ideal

filter (see Christiano and Fitzgerald, 2003, for PTFs of the approximate Bandpass filter). However, such

is only obtainable in retrospect using two-sided filtering, but not in real-time applications.

The proposed modified filter achieves a very good real-time reliability due to its one-sided nature,

but covers business cycle frequencies more evenly than the original approach by Hamilton (2018b).

Yet, it is very simple to compute. Further, the smoothing of different PTF peaks and troughs improves

substantially the treatment of high frequency noise in the obtained output gap and trend measures. While

the gap and the trend include erratic movements each quarter for the original Hamilton filter, those from

the modified Hamilton filter are very smooth as shown in Figure 2 (Panel A and B). This difference is

most clearly visible for the estimated trend growth rate (Panel C) that is as volatile as the growth rate

of GDP itself for the original Hamilton filter. Due to the structure of equation (1) the period t growth

rate of trend GDP and the period t −8 GDP growth rate are very similar (correlation coefficient: 0.93).5

Hence, the trend measure extracted via the original Hamilton filter can hardly be interpreted as potential

GDP, which in turn makes the economic interpretation of the resulting output gap difficult. By contrast,

4A Fourier frequency ω is associated with cycle length p = 2π/ω .
5For the original Hamilton filter trend growth is given by: ∆ŷt = β̂1∆yt−8 + β̂2∆yt−9 + β̂3∆yt−10 + β̂4∆yt−11.
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Figure 1: Power Transfer Functions in Frequency and Time Representation

the extracted trend based on the modified Hamilton filter is very smooth and its growth rate varies slowly

over time like those of other often used trend measures as, for example, based on the HP or the BP filter.

Further, the smooth trend of the modified Hamilton filter leads to a smoother output gap compared to the

original Hamilton filter.

3 Real-time Reliability

We analyze the real-time reliability of different output gaps in the spirit of Orphanides and van Norden

(2002) by computing output gaps based on real-time data vintages and comparing them to those based

on revised data. We obtain real-time data on quarterly real GDP from the Federal Reserve Bank of

Philadelphias’s real-time data set. The first data vintage is from 1965Q4 and the last data vintage is

from 2018Q1. Data in all vintages starts in 1947Q1 and ends one quarter before the publication date of

the data vintage, i.e. in 1965Q3 for the first and in 2017Q4 for the last data vintage. We take logs of

real GDP and apply the various filtering techniques to the real GDP vintages to get real-time output gap

vintages. We then collect the end-point estimates of these vintages to get a real-time output gap series
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Figure 2: Trend, Output Gap and Trend Growth: Original and Modified Hamilton Filter
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for each filtering method.

We use the last data vintage from 2018Q1 as our measure of final revised data and define the output

gap revision as the difference between the final and the real-time estimate. To make sure that a compar-

ison of real-time and revised data is not biased by the last data vintages in which real-time and revised

data are very close to each other, we follow Orphanides and van Norden (2002) and discard the last two

years of observations. Hence, our results for the revised gaps are based on the 2018Q1 vintage with gaps

being estimated until 2015Q4. This proceeding is reasonable since most revisions take place in the first

two years after the initial publication of GDP (Orphanides and van Norden, 2002; Edge and Rudd, 2016).

Hence, the sample of output gaps that we study starts in 1965Q3 and ends in 2015Q4.

To distinguish between data revisions and revisions due to the filter-induced structure, we compute

a quasi real-time series. That is, we estimate output gaps recursively as in the real-time estimation, but

based on the final revised data. By that we are able to isolate the impact of pure data revisions—defined

as the quasi real-time output gap minus the real-time output gap—as the estimates of the real-time and

the quasi real-time series are based on data covering the exact same time periods.

Figure 3 shows that revisions to output gaps computed with the original and the modified Hamilton

filter are small relative to the amplitude of the output gap and are mainly caused by data revisions as

also shown by Jönsson (2019) for the original Hamilton filter. By contrast, final and real-time output gap

estimates of the HP and the BP filter differ markedly from each other. Revisions for these are of the same

sizes as the output gaps themselves confirming the results by Orphanides and van Norden (2002) for an

updated sample. The revisions for the HP and BP filter are to a large extend filter-induced revisions,

while data revisions play only a minor role.

Table 1 presents summary statistics for the output gap revisions. The upper part of the table shows

statistics on total revisions. The Hamilton filtered output gap has the smallest mean error with a value

of 0.04 and the BP filter the largest with a value of 0.29, which is still not very large given that the BP

filtered output gap fluctuates between ±4. The standard deviation is smallest for the modified Hamilton

filter taking a value of 0.86 and almost twice as large for the HP filter with the original Hamilton and

the BP filter being in between. However, this value is not very informative without comparing it to the

standard deviation of the revised estimate of the output gap, because the amplitudes of the two versions

of the Hamilton filtered output gap are quite a bit larger than the amplitudes of the other two output gaps.

Such a comparison is given by the noise-to-signal ratios. The first measure of the noise-to-signal ratio

compares the standard deviation of the revision to the standard deviation of the final revised output gap

estimate. This value is only 0.3 for the two versions of the Hamilton filtered output gap, while it is with

values of 0.6 and almost 1.0 much larger for the BP and HP filtered output gaps. In principle, a noise-

to-signal ratio based on dividing the RMSE of the gap revision by the standard deviation of the final

revised output gap is more informative, because it reflects biases in the real-time output gaps. However,

the noise-to-signal ratios based on both measures are almost the same, because the biases of all four real-

time output gap estimates are small. Further, we report the differences between the noise-to-signal ratios

relative to the results obtained for the modified Hamilton filter in columns 6 and 8. To analyze whether

they are statistically significant, we follow Edge and Rudd (2016) and compute empirical distributions

of the noise-to-signal ratios based on a naive block bootstrapping procedure with replacement (Kilian

and Lütkepohl, 2017).6 The HP and BP filter based noise-to-signal ratios are significantly larger than the

one of the modified Hamilton filter. Finally, we also report the fraction of observations in which the final

6We use 5000 bootstrap replications and a block size of 4 to compute the empirical distributions of the noise-to-signal ratios.
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revised and the real-time output gap estimates have opposite signs. This is the case for only 3% and 6%

of observations for the modified and the original Hamilton filter, respectively, but for 19% and 31% of

observations for the BP and HP filtered output gaps, respectively.

Table 1: Statistics of Total Revisions and Data Revisions of Output Gaps

Noise-Signal Ratios

Mean SD RMSE SD Diff RMSE Diff Opposite

Sign

Total Revisions

Hamilton -0.04 1.00 1.00 0.30 -0.01 0.29 0.01 0.06
Modified -0.06 0.86 0.86 0.29 -- 0.29 - 0.03
HP -0.17 1.58 1.59 0.97 -0.68∗∗∗ 0.97 0.68∗∗∗ 0.31
BP -0.29 0.92 0.96 0.59 -0.30∗∗∗ 0.62 0.33∗∗∗ 0.19

Data Revisions

Hamilton -0.12 1.10 1.10 0.32 -0.00 0.33 -0.00 0.07
Modified -0.11 0.96 0.96 0.32 -- 0.32 -- 0.06
HP -0.01 0.60 0.60 0.37 -0.05 0.37 -0.05 0.04
BP -0.04 0.34 0.34 0.22 -0.10 ∗∗ 0.22 -0.10 ∗∗ 0.08

Notes: *, **, and *** denote significance on the 10, 5, and 1% significance level. Diff refers to differences in the noise-to-signal ratios in
the previous column relative to the one of the modified Hamilton filter.

The lower part of the table shows statistics on the share of the revisions that is caused by data revi-

sions. This share is computed by subtracting the real-time output gap estimates from the quasi real-time

estimates. For the two versions of the Hamilton filter, the standard deviations and the noise-to-signal

ratios based on data revisions and on total revisions are very similar. This reflects that almost all re-

visions of these output gap measures are due to data revisions. For the HP and BP filter, the standard

deviations, RMSEs and the two noise-to-signal ratio measures are much smaller than for total revisions,

reflecting that data revisions are relatively unimportant. The differences in the noise-to-signal ratios as-

sociated with the data revisions are insignificant or even in favor of the BP based measure. Hence, the

significantly higher presence of noise in the total revision series of the HP and BP filter compared to the

modified Hamilton filter in the upper part of the table is merely due to the different filtering procedures

rather than to data revisions. Further, there are relatively few sign switches between the real-time and the

quasi real-time output gap estimates for all four methods.

Overall, we find that the output gaps based on the modified and the original Hamilton filter are by far

the most reliable real-time output gap measures. It is also worth noting that the BP filter performs better

than the popular HP filter that shows the least reliable performance among the four output gap measures.

The reason for the high reliability of the two Hamilton filtered output gaps with respect to revisions is

that they rely on one-sided filters. Revisions can occur only for two reasons: data revisions and changes

in the estimated parameters of the AR(4) processes. Data revisions lead only to small revisions of the

output gap estimates as discussed above. Regarding the estimated AR(4) parameters, Figure 4 shows for

the original Hamilton filter how they change over time via the recursive estimation procedure and how

they converge to the full sample estimates. While there are some changes, overall the parameters are

rather stable. When looking at the sum of the AR-coefficients there are almost no changes at all. GDP

follows a unit-root or near unit-root process for all subsamples. Regarding the estimated constant, there

are some changes until the subsample ending in 1985. Afterwards, the estimates decrease somewhat

reflecting the growth slowdown in the 1980s.

Determining the current output gap is an important element in the policy process at policy institutions

like, for example, central banks. To understand to which extent the revisions of output gaps matter in the

policy process of a central bank one can think about the implied interest rate distortions. For example,
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when using the standard Taylor rule, the interest rate reaction to the output gap is 0.5. Hence, the

interest rate distortions through output gap revisions are given by multiplying the output gap revisions

with 0.5. The usage of real-time compared to revised output gap estimates would imply interest rates

that are on average 0.08 percentage points too low for the HP filter, 0.14 percentage points too low for

the BP filter, but only 0.02-0.03 percentage points too low for the two Hamilton filter based output gaps.

More interesting might be the maximal mistake when using real-time compared to revised output gap

estimates. The numbers (1.90, 1.79, 1.68, and 1.20 percentage points for the original Hamilton, the

modified Hamilton, the HP and the BP filter, respectively) are however not very meaningful. Due to

the higher amplitude of the two versions of the Hamilton filter, the output gap coefficients in a policy

rule would be chosen smaller. The standard deviations of the revised Hamilton filtered output gaps are

approximately twice as large (3.26 and 2.92 for the original and the modified version) compared to the

HP filtered (1.52) and the BP filtered (1.45) output gaps. Hence, we adjust the numbers for the BP and

the two Hamilton filter to make them comparable to the HP filter by dividing by the standard deviation of

the respective output gap and multiplying the result with the standard deviation of the HP filtered output

gap. This results in maximal interest rate setting mistakes of 1.68 percentage points for the HP filtered

(no adjustment), 1.26 for the BP filtered output gap (1.20/1.45*1.52) and only 0.89 (1.90/3.26*1.52) for

the original and 0.93 (1.79/2.92*1.52) for the modified Hamilton filtered output gap. Thus, the maximal

interest rate mistake implied by output gap revisions would be almost twice as large for the HP filtered

compared to using one of the two Hamilton filter based output gaps.

4 Economic Meaningfulness of Output Gap Estimates

While there is evidence for a superior real-time performance of the two versions of the Hamilton filtered

output gap compared to the HP and BP filtered ones, it is yet unclear whether the Hamilton filtered gaps

are economically meaningful. A first basic requirement of the output gap being stationary is fulfilled as

long as the original time series is integrated of order 4 or less (Hamilton, 2018b).7 This is clearly the

case for real GDP. Further, at least the modified Hamilton filter yields a smooth trend estimate and an

output gap that covers the relevant business cycle frequencies relatively evenly.

A second requirement for a meaningful output gap is that the method used is able to successfully

7Some well-known output gap estimation methods fail to do so. Besides deterministic detrending procedures also DSGE

model-based output gaps can be nonstationary (Wolters, 2018).
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disentangle trend and cycle. Hamilton’s method is able to do so to the extent that no large trend changes

occur between periods t −8 and t. Hamilton (2018b) justifies the exclusion of trend changes over a two-

year horizon arguing that the primary reason for forecast errors at this horizon are transitory factors such

as whether a recession occurs and the timing of recoveries. Other output gap estimation methods are

based on a similar a-priori belief that the cyclical volatility is much larger than the volatility of the trend.

An example is the standard smoothing parameter of 1600 of the HP filter. A statistical formalization

of the choice of the HP smoothing parameter would result in a much lower cyclical relative to trend

volatility.8 Similarly, when using the Beveridge-Nelson decomposition, only a version with a strong prior

belief that the volatility of the cyclical component is much higher than the one of the trend component

leads to sensible output gap estimates, while without imposing such a prior belief, changes in the trend

component dominate (Kamber et al., 2018). Hence, the a-priori choice that over a two-year horizon trend

changes are much less important than cyclical fluctuations is in line with other output gap estimation

methods and the modified version of the Hamilton filter accounts for trend changes to a certain extent

already after one rather than two years.

After all, the appropriateness of a filtering technique depends on the researcher’s objective. For

output gap estimations the objective is often to match important historical business cycle episodes. Com-

puting correlations of the quarter-on-quarter change of the different real-time output gap measures with

a dummy variable that takes the value of 1 during NBER defined expansions and 0 during NBER defined

recessions, yields a correlation of 0.46 for the original Hamilton, 0.54 for the modified Hamilton, 0.40

for the HP and 0.41 for the BP filtered output gaps.9 Overall, the analysis yields first indications that

the modified Hamilton filtered output gap is economically meaningful. More systematic evaluations are

provided below.

4.1 Correlation with Output Gaps from Policy Institutions

First, we compare real-time output gap estimates to revised U.S. output gap estimates of the Federal

Reserve, the Congressional Budget Office (CBO), the IMF and the OECD. Revised output gap estimates

of policy institutions should be useful benchmarks for three reasons. First, they entail economic consid-

erations regarding past courses of the U.S. business cycle that include a substantial amount of economic

expertise rather than being based only on statistical models. Second, the assessment of policy institutions

should capture output gap dynamics that are deemed important from a practitioner’s perspective. Finally,

recent papers show that output gaps from policy institutions have been more reliable than those based

on statistical methods over the last 20 years (see Edge and Rudd, 2016, for the Fed’s output gap and

Champagne et al., 2018, for the Bank of Canada’s output gap).

For all four policy institutions models or statistical approaches build the foundation for the potential

output estimates. Yet, all institutions combine this with a large amount of judgment. The FED’s estimates

rely on a judgmental pooling of results from different statistical and structural methods and models

(Mishkin, 2007; Edge and Rudd, 2016). The CBO focuses on a sectoral production function approach

where “a substantial degree of judgment” is applied, for example, to the projections of potential TFP,

8The standard HP smoothing parameter of 1600 is based on the assumption that the volatility of the cyclical component is

σc = 5 and the volatility of the trend component is σt = 0.125 resulting in λ = σ2
c /σ2

t = 1600. A statistical formalization of

the choice of λ leads to a value of 0.245 for U.S. quarterly GDP (Hamilton, 2018b).
9One would expect that output falls below potential during a recession implying a decreasing output gap, while one would

expect it to rise above potential during a boom implying an increasing output gap. Based on this, we compute correlations with

NBER recession dates based on the changes in the output gap rather than the output gap itself.
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potential output of the household sector or federal employment (Shackleton, 2018). The OECD also uses

a production function approach, but assumptions regarding the future NAIRU, working age population,

rates of participation and productivity or capital and wage shares are implemented on a judgmental basis

(Beffy et al., 2006). Lastly, the IMF’s production function framework (De Masi, 1997) is also augmented.

Here, the judgment of desk economists and mission of chiefs plays a key role in evaluating a country’s

potential output (De Resende, 2014; Rosnick, 2016).

There are some limitations regarding available samples and frequencies of output gap estimates from

policy institutions. For the Fed and the CBO quarterly data is available, while for the IMF and the OECD

only annual data is available. Further, for the Fed data is only available until 2012Q3. The data is based

on the Greenbook which is made available to the public with a 5 year lag. Data for the Fed and the CBO

is available from the start of our real-time output gap sample in 1965Q3, while data for the IMF and the

OECD starts in 1985.

Table 2 shows correlations for the quarterly output gap series covering the period 1965Q3 until

2012Q3 on the left and for the annual series for data from 1985 to 2012 on the right.10 It gets apparent that

the two Hamilton filtered real-time output gaps are highly correlated with all policy institutions’ output

gaps with correlation coefficients ranging from 0.55 to 0.86. The output gap based on the modified

Hamilton filter has an even higher correlation with all four expert output gap estimates than the one

based on the original filter. The HP and BP filtered real-time output gap correlations with the policy

institutions’ gaps are much lower ranging from 0.16 to 0.59, with those of the HP filter being particularly

low. Both Hamilton filtered output gaps have a significantly higher correlation with the expert output

gaps compared to the output gaps based on the HP or the BP filter. Interestingly, for all four statistical

output gap measures the correlations are higher with the output gaps of the FED and the CBO—the

two U.S. institutions—than with the IMF and OECD—the two international institutions. Overall, these

results imply that the real-time Hamilton filtered output gaps—and in particular the version based on the

modified Hamilton filter—are able to reflect the ex post expert evaluation of the U.S. business cycle to a

considerable degree in real time, while the BP and in particular the HP filter do this to a much smaller

extent.

Table 2: Evaluation Based on Expert Output Gap Estimates: Correlations

Quarterly Data (1965Q3-2012Q3) Annual Data (1985-2012)

FED CBO FED CBO IMF OECD

Hamilton 0.59 0.68 0.78 0.82 0.69 0.55

Modified 0.64 0.73 0.83 0.86 0.73 0.60

HP 0.25*** 0.36*** 0.33*** 0.43*** 0.29** 0.16**

BP 0.49** 0.59** 0.51** 0.57** 0.49 0.37

Notes: *, **, and *** denote significant differences relative to the respective correlation with the modified Hamilton filter on

the 10, 5, and 1% significance level.

10The sample end is chosen to make the results for the FED’s output gap comparable to the other ones. Extending the sample

for the other output gap series yields very similar results. For simplicity, we base the annualized series for the real-time gap

measures on yearly averages of the real-time series. When we account for within year revisions for quarters one to three of a

given year to mimic the information set of a policy maker we obtain very similar results, both regarding correlations as well as

p-values of differences between correlations.
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4.2 Forecasting Performance: Output Growth

The previous analysis shows that the assessment of the meaningfulness of output gap estimates is to some

extent subjective depending on the researcher’s objective regarding what the output gap should measure.

However, with the assessment of the predictive content of output gap estimates also a more objective

criterion is available.

Nelson (2008) proposed the evaluation of competing output gap measures via their output growth

forecasting performance. If an output gap is negative, one would expect above average output growth

rates in the future, so that output reverts back to trend. Conversely, if the output gap is positive, output

growth should be below average some time in the future. We use a standard forecast equation in which

output growth h periods ahead is predicted using the real-time output gap:

yt+h − yt = α +β ĉt + εt+h|t , (9)

where y denotes log real GDP, ĉ the estimated real-time output gap and εt+h|t the forecast error. The

equation is estimated with OLS. The first subsample goes from 1965Q3 to 1975Q2 covering 10 years of

data. The sample is then recursively extended quarter-by-quarter. Forecasts are computed for horizons

of 1 to 12 quarters ahead. Based on the intuition developed above, we expect β < 0 at some horizon,

essentially indicating the ability of the output gap to predict trend-reverting tendencies of the output

growth series.

Table 3 shows RMSEs and the estimated slope coefficient β averaged over all subsamples. The

RMSEs are reported for the Hamilton, modified Hamilton and BP filtered output gaps relative to the

HP filtered one. A number smaller than 1 indicates a superior forecasting performance of the Hamilton,

modified Hamilton or BP filtered output gap, while a number larger than 1 indicates that the HP output

gap dominates. The RMSEs of output growth forecasts based on the four different real-time output gap

measures are almost identical. The small differences are insignificant based on the Dieboldt-Mariano

test. The signs of the slope coefficients show that all four output gap measures predict trend-reverting

output growth rates. The slope coefficients are negative and significant from horizon 6 onwards for the

two Hamilton and the BP filtered output gap and from horizon 11 onwards for the HP filtered output gap.

The size of the slope coefficients cannot be directly compared, because of the different amplitudes of the

three output gap measures.

The results change when leaving out the period of the Great Recession and its aftermath. When

ending the forecast evaluation in 2007Q4 the RMSEs of the two Hamilton filtered output gaps relative

to the HP filtered one drop to values around 0.9 for horizons 8 to 12 and the difference is significant on

the 10% level. The RMSEs relative to the BP filter drop to values around 0.97 for horizons 8 to 12, but

differences remain insignificant. One reason why the Hamilton filtered output gap’s relative performance

improves when leaving out the post 2007 period is that it adjusts to structural breaks in the level of GDP

late. The Hamilton filter needs about three years to adjust to the level shift of GDP after the Great

Recession. This is why the output gap of the Hamilton filter is highly negative until the end of 2010. The

HP and BP filter based output gap measures are more flexible with respect to trend adjustments if there

are very large business cycle fluctuations, so that the output gap goes back to zero more quickly after the

crisis. The recovery after the crisis was slow, so that there are no above average output growth rates after

2010 as one would expect from the prolonged highly negative output gap of the Hamilton filter until the

end of 2010.
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Table 3: Output Growth Forecast Evaluation

Relative RMSE Slope Coefficient (p-value)

Horizon Hamilton/HP Modified/HP BP/HP Hamilton Modified HP BP

1 1.02 1.02 1.02 -0.03 (0.24) -0.03 (0.22) -0.13 (0.02) -0.08 (0.34)

2 1.01 1.01 1.01 -0.02 (0.53) -0.03 (0.54) -0.18 (0.05) -0.04 (0.60)

3 1.01 1.01 1.01 -0.02 (0.67) -0.02 (0.69) -0.17 (0.14) -0.08 (0.70)

4 1.02 1.01 1.02 -0.06 (0.37) -0.07 (0.34) -0.13 (0.27) -0.26 (0.26)

5 1.01 1.00 1.02 -0.12 (0.13) -0.15 (0.10) -0.05 (0.45) -0.47 (0.07)

6 1.01 0.99 1.01 -0.18 (0.04) -0.22 (0.03) -0.05 (0.63) -0.69 (0.02)

7 0.99 0.98 1.00 -0.24 (0.01) -0.29 (0.01) -0.15 (0.57) -0.89 (0.00)

8 0.98 0.97 0.99 -0.30 (0.00) -0.36 (0.00) -0.27 (0.29) -1.07 (0.00)

9 0.97 0.97 0.98 -0.35 (0.00) -0.41 (0.00) -0.36 (0.15) -1.21 (0.00)

10 0.97 0.97 0.97 -0.39 (0.00) -0.45 (0.00) -0.44 (0.07) -1.33 (0.00)

11 0.97 0.97 0.97 -0.42 (0.00) -0.49 (0.00) -0.51 (0.03) -1.45 (0.00)

12 0.97 0.97 0.97 -0.44 (0.00) -0.53 (0.00) -0.60 (0.01) -1.54 (0.00)

Notes: *, **, and *** denote significance on the 10, 5, and 1% significance level based on a two-sided Dieboldt-Mariano (1995) test (refers
to the relative RMSEs in columns 2-4).

Overall, the results from this exercise are inconclusive in judging which output gap measure has

favorable properties. On the one hand the two Hamilton filtered output gaps perform somewhat better

than the HP filtered one, but on the other hand a drawback of the Hamilton filter is its inflexibility to

adjust to structural breaks early on. Differences to the BP filter with respect to the prediction of trend-

reverting output growth rates are small.11

4.3 Forecasting Performance: Inflation

Since theory predicts that output gap estimates should be useful predictors for forecasting inflation, we

also consider a Phillips curve type forecasting model to evaluate the competing output gap measures. We

follow Stock and Watson (1999b), Clark and McCracken (2006), Stock and Watson (2008) and Kamber

et al. (2018) in specifying an autoregressive distributed lag (ADL) Phillips Curve forecasting equation:

πt+h −πt = α +
p

∑
i=0

βi∆πt−i +
q

∑
i=0

γiĉt−i + εt+h|t , (10)

where πt denotes U.S. PCE inflation, ĉt the estimated real-time output gap and εt+h|t the forecast errors.12

We use final revised data for inflation. The lag lengths p for inflation and q for the output gap are

determined based on the entire sample using the SIC. We consider p ∈ [0,12] and q ∈ [0,12]. When

doing the recursive forecast evaluation we assume that the optimal lag order is known a priori. As above

the initial sample runs from 1965Q3 to 1975Q2, the sample is recursively extended quarter-by-quarter

and forecasts are computed for horizons 1 to 12. For comparison we also compute results for a model

that omits the output gap, but is otherwise identical to equation (10).

Table 4 shows root mean squared inflation forecast errors based on the two Hamilton filtered output

gaps relative to those based on the HP and the BP filter and based on the specification without output gap.

11When conducting the same exercise with final revised output gaps, the RMSEs of the Hamilton filtered output gaps are

significantly larger than the ones of the HP and BP filter. However, this is not a suitable criterion to conclude that for historical

analyses revised HP and BP filtered output gaps are preferable. The low RMSEs merely reflect the two-sided nature of the HP

and BP filter. When using future information to measure the output gap, then it is not surprising that the predictive content

regarding these future realizations is higher compared to using a one-sided filter like the Hamilton filter.
12This specification is based on changes in inflation, i.e. it imposes a unit root in inflation. We also estimated models in terms

of inflation levels and specifications that include a relative import price inflation term. The forecasting results are very similar.
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Table 4: Inflation Forecast Evaluation

Relative RMSE

Horizon Hamilton/HP Modified/HP Hamilton/BP Modified/BP Hamilton/No

Gap

Modified/No

Gap

1 1.02 1.01 1.02 1.02 1.10*** 1.10***

2 1.01 0.98 0.99 0.97 1.01 0.99

3 1.00 0.99 1.00 0.99 1.04 1.03

4 1.00 1.01 1.00 1.01 1.01 1.02

5 1.01 1.00 0.99 0.98 0.99 0.97

6 1.01 1.00 0.97 0.96 0.96 0.95

7 0.97 0.97 0.97 0.97 0.93 0.92

8 1.01 1.01 1.01 1.01 0.96 0.95

9 1.01 1.01 1.00 1.00 0.97 0.96

10 1.01 1.01 1.00 1.00 0.97 0.96

11 1.01 1.01 1.02** 1.02** 0.96 0.95

12 1.01 1.01 1.01 1.00 0.96 0.95

Notes: *, **, and *** denote significance on the 10, 5, and 1% significance level based on a two-sided Dieboldt-Mariano (1995) test.

The differences between the forecasting models are marginal and mostly insignificant. Further, models

that condition on an output gap measure do not significantly improve upon a univariate inflation forecast.

While these results unfortunately do not help in evaluating competing output gap measures, they are

fully in line with the literature. Among others, Stock and Watson (2007, 2008), Edge and Rudd (2016),

and Kamber et al. (2018) find that it is generally difficult to beat univariate inflation forecast models

through conditioning on output gaps. We find very similar results, when conditioning on final revised

output gaps. Hence, these results are due to the general decline in the forecastability of inflation in recent

decades (Stock and Watson, 2007, 2008), rather than to real-time output gap measurement problems.

5 Alternative Specifications

Alternative Forecast Horizon Ranges The modified Hamilton filter is based on a simple mean of

forecast errors of horizons from 4 to 12 quarters ahead. This specification is close to Hamilton’s original

proposal, because it is centered around the 8-quarter horizon proposed by Hamilton. To test the sensitivity

of our results, we also compute results for the different output gap evaluations for other forecast horizon

ranges. Specifically, we consider tighter (4−8 quarters) and wider (2−10) bands of forecast horizons.

While these two specifications are still centered around the 8-quarter horizon, we also compute results

for tight and wide bands centered around h = 6 (4−8; 2−10) and h = 10 (8−12; 6−14).

We find that real-time output gaps based on all these different specifications have a much higher

correlation with NBER dated recessions and revised output gaps from policy institutions than real-time

output gaps based on the HP or the BP filter. Among the different forecast horizon specifications it turns

out that including higher forecast horizons compared to the baseline either via increasing the range of

considered forecast horizons or by centering around a horizon of 10 instead of 8 quarters ahead increases

correlations, while tighter bands or centering around a 6 quarter ahead forecast horizons decreases cor-

relations. However, when looking at the results of the spectral density analysis, it becomes clear that

including higher forecast horizons leads to a less even coverage of typical business cycle frequencies.

Short cycles are muted and cycles that are longer than 8 years, which is typically considered as the up-

per bound for business cycles, are amplified. Hence, if one thinks that policy institutions have the best
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assessment of which dynamics should be taken into account, then including higher horizons might be

preferable. If one wants to stick to a standard definition of business cycle frequencies, then our base-

line specification is preferable. Regarding output growth forecasts differences across specifications are

very small. Finally, for inflation forecasts the bands centered around a forecast horizon of 6 quarters

show small gains in accuracy compared to the baseline range, though differences are only significant

for 1- and 2-quarter-ahead inflation forecasts. Based on these exercises, a trade-off gets gets apparent:

including longer horizons helps the real-time output gap measure to match NBER recessions and the re-

vised expert output gaps better, while including shorter horizons increases inflation forecasting accuracy.

Overall, these results show that a range centered around a forecast horizon of 8 quarters seems to be a

good choice when considering the results across all the different evaluation exercises.

Optimizing Weights of the Modified Hamilton Filter The modified Hamilton filter is based on an un-

weighted average of forecast errors of different horizons. While this makes the computation particularly

simple and transparent, we also analyze to which extent the output gap measurement can be improved by

choosing an optimized weighting scheme instead. First, we choose weights in order achieve a PTF that is

as close as possible to the ideal PTF that takes a value of one for cycle lengths from 6 to 32 quarters and

a value of zero otherwise. Second, we choose weights in order to get as close as possible to a PTF that

takes the average value of the original Hamilton filter’s PTF over the cycles from 6 to 32 quarters length

and zero otherwise. This average is close to 2, i.e. almost double the size of an ideal PTF reflecting

the higher amplitude of output gaps based on Hamilton-type filters. For both exercises we use the full

sample for the optimization of weights, consider forecasting horizons between 4 and 12 quarters and a

quadratic loss function. We restrict the weights across the 9 considered horizons to be positive and to

sum to one.

In both optimized versions, only 4 of the 9 horizons have weights that are larger than zero. These

are horizons 4 (weight 0.45), 6 (0.24), 9 (0.17) and 12 (0.14) for fitting the ideal PTF and 4 (0.27), 6

(0.26), 9 (0.32) and 12 (0.15) for fitting the average PTF of the business cycle frequencies based on

the original Hamilton filter.13 Hence, the results indicate that it is sensible to include shorter as well

as longer horizons. They also indicate that h = 8 serves as a good center for the band of forecasting

horizons considered in our modification. Above, we found that including higher horizons increases

correlations with revised expert output gaps. The higher weights on short compared to long horizons

in the optimization exercise confirm, however, that this comes at the cost of deviating from standard

definitions of business cycle frequencies by giving too much weight to medium- to long-run cycles.

Figure 5 shows the PTFs for Hamilton’s original filter, the modified one and the filters with optimized

weights. It gets apparent that the cyclical properties of our simple rule-of-thumb modification are very

similar to the one where we optimize weights to fit the average PTF of the original Hamilton filter for

cycles between 6 and 32 quarters.

We also repeated all other analyses with the output gaps based on optimized weights.14 In all eval-

uation exercises, the results are very similar for the versions with optimized weights and the one based

on a simple average of forecast errors of different horizons. The correlations of the simple modified

Hamilton filter with revised expert gaps are slightly higher than those of the modified Hamilton filter

13We cut off the optimization after a maximum cycle length of 128 quarters. The results are the same up to rounding precision

if we chose a shorter (64 quarters) or longer (256) cutoff point.
14To keep the exercise tractable, we determine the optimal weights based on the full sample and assume that these are known

a priori.
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Figure 5: Original, Modified and Fitted Power Transfer Functions in Time Representation

with optimized weights, there are no differences with respect to the output growth forecasts and only

small differences for inflation forecasts. For the latter the output gaps based on optimized weights have

a slightly higher forecast accuracy for short horizons of 1 and 2 quarters ahead.

Breaks in Trend Growth Both, Hamilton’s original as well as our proposed modified procedure, rely

on constant coefficients. To study whether accounting for structural breaks can improve the real-time

output gap measures, we implement Bai-Perron procedures (Bai and Perron, 1998, 2003) to account for

multiple structural changes in U.S. real GDP.

We mimic the information set available in real time and use Bai-Perron procedures recursively to

detect structural changes in the estimated trend growth rate represented by β̂0 for each data vintage.15

We find evidence for a first structural change in trend growth in the beginning of the 1960s. Subsequent

changes are then associated with the productivity slowdown during the 1970s, the start of the Great

Moderation during the mid-1980s and the run-up to the dot-com bubble starting in the mid-1990s. While

breaks are detected reliably about 5 to 6 years after their occurrence, exact dates of the determined break

points are sensitive to the specific data vintage used. Afterwards, we re-estimate the Hamilton-filtered

output gaps for each data vintage accounting for the detected structural breaks in the constant.

Figure 6 shows the unadjusted and the Bai-Perron adjusted real-time output gap estimates. Overall,

the break-point adjusted output gap is higher than the baseline output gap from the mid-1980s onwards.

Apart from that, the dynamics are very similar. The reason is that the magnitude of the estimated breaks

is relatively small compared to the unconditional variance of GDP growth, so that the estimated autore-

gressive coefficients are little impacted by allowing for breaks. Therefore, the original and modified

Hamilton filtered output gaps are robust to accounting for structural change in trend growth.16

Comparison to Beveridge-Nelson decomposition In addition to the literature on the real-time reli-

ability of output gaps, the paper by Kamber et al. (2018) is closely related to our work. They use a

modified Beveridge-Nelson decomposition to estimate output gaps. The method is related to the Hamil-

ton filter, because it also uses an autoregression to estimate the trend. The approach of Kamber et al.

(2018) is on the one hand less ad hoc, because they estimate the trend based on long-horizon conditional

expectations, rather than imposing a fixed horizon of 8 quarters. Further, the long-horizon conditional

15We compute the break dates based on Hamilton’s original procedure, test for changes in the constant and use a 15%

trimming as minimum distance between two potential breaks in the respective sample.
16When accounting for structural breaks, the size of revisions increases somewhat, because a breakpoint is first detected

about five years after it occured. The correlations of real-time and revised Hamilton filtered output gaps drop from about 0.95

to about 0.81.
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Figure 6: Real-time and Bai-Perron Break-Point Adjusted Gaps

expectations are measured using data until period t rather than t −8, so that trend changes between t −8

and t are accounted for. By contrast, when using the Hamilton filter one implicitly assumes that there are

no relevant trend changes during this period. On the other hand, the computation of the Hamilton filter

and also the modified version proposed in this paper is much simpler and more intuitive. The standard

Beveridge-Nelson decomposition yields an output gap that is completely at odds with standard business

cycle facts and therefore an algorithm with several steps has to be run to get the modified Beveridge-

Nelson decomposition that makes sure that most GDP dynamics are attributed to the cycle rather than

trend changes. For the Hamilton filter the computation of forecast errors based on simple autoregressions

is instead sufficient.

The Beveridge-Nelson (BN) output gap proposed by Kamber et al. (2018) and Hamilton type output

gaps are highly correlated (correlation coefficients around 0.9), both ex post and in real time. Hence,

it is not surprising that the different output gap evaluation exercises yield overall similar results for the

real-time BN output gap as for the real-time Hamilton filtered output gaps.17 The only difference is

in the output growth forecasting exercise. While the modified Hamilton filter showed significant gains

over the HP filtered output gap in forecasting accuracy for the longer horizons when excluding the Great

Recession from the sample, the difference between the BN and HP filtered output gaps is insignificant.

6 Conclusions

We have proposed a modified version of the Hamilton filter for the estimation of reliable and economi-

cally meaningful real-time output gaps. It shares the favorable real-time properties of the Hamilton filter

and is similarly easy to compute, but has a much better coverage of typical business cycle frequencies

and yields a smooth estimated trend, while the original approach does not. While the original approach

is very useful for detrending, the modified version allows a meaningful economic interpretation of the

17We follow the specification in Kamber et al. (2018) and choose AR(12) and δ = 0.24 for the noise-to-signal ratio.
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cyclical component as an output gap and of the trend as potential GDP. This is particular important,

because the existing papers applying the Hamilton filter use it not merely for detrending, but attach an

economic interpretation to the filtered time series. Compared to other simple statistical trend-cycle de-

composition techniques such as the HP or the BP filter, the real-time output gap based on the modified

Hamilton filter shows a much higher correlation with ex post assessments of output gaps from impor-

tant policy institutions. Hence, the method yields a real-time output gap that captures business cycle

dynamics that are deemed important from a practitioner’s perspective.
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