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Abstract

Using a nonlinear Bayesian likelihood approach that fully accounts for the zero lower bound
on nominal interest rates, we analyze US post-crisis business cycle dynamics and provide
reference parameter estimates. Contradicting the gist of the literature, we find that neither
the inclusion of financial frictions nor that of household heterogeneity improve the empirical
fit of the standard model, or its ability to provide a joint explanation for the post-2007
dynamics. Associated financial shocks mis-predict an increase in consumption. The common
practice of omitting the ZLB period in the estimation severely distorts the analysis of the
more recent economic dynamics.
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1 Introduction

More than a decade ago, the Financial Crisis and the subsequent Great Recession did
not only wreak havoc on the US economy, but it also shook the macroeconomic profes-
sion to the core. As a consequence, a plethora of approaches has been developed to enrich
dynamic macroeconomic models with features conceived to enhance our understanding of
the dynamics during and after the Great Recession. While progress flourished on the front
of theoretical modeling, very few attempts have been made to test these models empiri-
cally on the period including and following the Great Recession. This is primarily due to
the long-lasting binding zero-lower bound on nominal interest rates (ZLB)1, which renders
conventional econometric methods unsuitable.

⋆We are grateful to Alex Clymo, Gavin Goy, Alexander Meyer-Gohde, Alexander Richter, Mathias Tra-
bandt, Carlos Zarazaga and participants of the 2018 Stanford MMCI Conference, the 2018 EEA Annual
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has received financial support from the Alfred P. Sloan Foundation under the grant agreement G-2016-7176
for the Macroeconomic Model Comparison Initiative (MMCI) at the Institute for Monetary and Financial
Stability.

∗Corresponding author
Email addresses: gboehl@uni-bonn.de, felix.strobel@bundesbank.de

1Given the recent European and Japanese experience with slightly negative rates, the term “effective
lower bound” is more precise. Nevertheless we employ the term “zero lower bound” throughout this text as
it is used more frequently in the literature.



In this paper, we make a step towards closing this gap by providing an account of the
last two decades based on a set of models, which are estimated on data from this period.
Our sample extends to 2019, thereby including the exit from the ZLB. Using a set of novel
methods developed in Boehl (2020b) allows us to estimate large macroeconomic models while
fully accounting for the effects of the ZLB. We take the standard medium-scale representative
agent new Keynesian model (RANK) of Christiano et al. (2005) and Smets and Wouters
(2007) as the baseline model. Motivated by the importance of the interlinkages between the
financial sector and the real economy during the Great Recession, we consider the extension
of the framework developed by Christiano et al. (2014); Del Negro et al. (2015b), who add
financial frictions as in Bernanke et al. (1999). Motivated by the rising interest in the effects
of household heterogeneity on the macroeconomy we further include the effects of hand-to-
mouth agents into our analysis. The two agent new Keynesian (TANK) model can be seen
as a shortcut to the more thorough heterogeneous agent new Keynesian (HANK) model
while incorporating important additional channels in our investigation.2

Our first key contribution is to demonstrate that neither the inclusion of financial fric-
tions nor hand-to-mouth consumers enhance the standard model’s empirical fit or its ability
to provide a parsimonious account of the crisis. Second, we illustrate how an omission of
the Great Recession and the ZLB period in the empirical analysis may result in misleading
conclusions regarding the drivers of macroeconomic dynamics in the last decades. Third,
we provide reference estimations for the crisis sample, which we compare across models and
with estimation results for a pre-crisis sample.

With the Financial Crisis being one, admittedly complex, event, a good model should
be able to allot the bulk of the persistent effects of the crisis to a common source within the
model (Angeletos et al., 2018).3 However, we find that all models that we consider fall short
in accounting for the joint dynamics of investment, consumption and inflation following
2008. Instead - in the extreme case of the models with financial frictions - the downturns
of consumption and investment during the recession are almost entirely driven by disparate
exogenous forces. Strictly speaking, these models attribute the behavior of these variables
to two different crisis events instead of providing a joint propagation mechanism that points
towards a parsimonious interpretation of the Great Recession.

We demonstrate that the economic question of a joint propagation mechanism is closely
linked to the empirical fit of the model. To some degree this is intuitive as a joint driver
that moves the macroeconomic system as a whole reduces the need for several separate
large shocks to generate the extreme dynamics in different variables observed during the
recession, thereby improving the likelihood of the model.

The simple RANK model outperforms its extended counterparts in terms of empirical
fit. In this model, an exogenous increase in the risk premium on households’ borrowing rate
is the main driver of macroeconomic dynamics following the Great Recession. Risk premium
shocks account for the drop in consumption and are responsible for the long duration of the
ZLB. However, they can only provide a partial explanation for the behavior of investment
and inflation during the recession. To generate the extent of the collapse in investment, an
extra driver, here shocks to the marginal efficiency of investment (MEI), is needed. Similarly,

2See, e.g., McKay and Reis, 2016; Kaplan et al., 2018; Auclert, 2019 on the current stand of this literature.
3Angeletos et al. (2018) go even further and search for one shock as a main driver of business cycles over

a longer time-span. In their paper, they list, for instance, the TFP shock in Kydland and Prescott (1982),
the marginal efficiency of investment shock by Justiniano et al. (2010) and the risk shock by Christiano
et al. (2014) as examples for similar endeavors.
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the dip of inflation in that period is associated with additional shocks to the price markup.
Hence, albeit to a lesser extent than other models, RANK also attributes the dynamics
in consumption, investment and inflation in that event to distinct drivers which hit the
economy in different sectors.

Financial frictions à la Bernanke et al. (1999) do not improve upon the RANK model’s
ability to provide a parsimonious explanation for the dynamics during and after the Great
Recession, nor do they enhance the empirical fit of the model.4 The reason for this is that
the response of investment to risk premium shocks is attenuated by the presence of finan-
cial frictions. Recessionary shocks only trigger a short-lived contraction in entrepreneurial
net worth, but a more persistent decline in the capital stock. This implies that the en-
trepreneurial leverage decreases in the medium run, lowering the credit spread and hence
the cost of investment. The outlook of a favorable future investment climate actually damp-
ens the decrease in investment from the onset and impairs the ability of the shock to generate
the sharp drop of investment observed in the Recession. The financial sector attenuates the
effect of MEI shocks on investment in a similar fashion.

While MEI shocks and shocks that target investment financing can account for the col-
lapse of investment during the Great Recession, they do not contribute to the substantial
decline of consumption in that episode. We illustrate this for the case of risk shocks in the
spirit of Christiano et al. (2014). Our estimates suggest that these shocks trigger a negative
co-movement of household spending and investment, which is at odds with observed dynam-
ics. Consequently, we find that these shocks only play a very minor role for macroeconomic
dynamics in and after the Great Recession. This somewhat inconvenient finding has im-
plications for other financial shocks as well, that have been proposed in the literature and
do not lower consumption on impact, such as the credit shock and the investment shock in
Carlstrom et al. (2017) or the wealth shock proposed in Carlstrom and Fuerst (1997).5 On
a more general note, it appears that a shock that affects borrowing rates of households and
firms alike is a more promising candidate for providing an account of the Great Recession.

The inclusion of hand-to-mouth agents hardly affects aforementioned results. Parameter
estimates, the empirical fit and the transmission of risk premium shocks are very similar for
TANK and RANK models. Given our parameter estimates, the direct effects and indirect
effects of hand-to-mouth agents in response to a risk premium shock roughly chancel out. A
weakening link between consumption and the risk premium is offset by a stronger connection
between consumption and movements in real activity. For a pre-crisis sample in which
other shocks such as MEI shocks and wage markup shocks play a more prominent role,
we demonstrate that the inclusion of hand-to-mouth agents actually lowers the models
empirical fit as they suggest a negative correlation of wages and investment in response to a
wage markup shock. This is hard to reconcile with the empirical evidence. We conclude that
in the context of the standard medium-scale model, which already contains a host of bells
and whistles, our analysis suggests that hand-to-mouth agents are a non-essential feature for

4By considering the role of financial friction for the US economy in the Great Recession, we touch upon
an active literature. Meh and Moran, 2010; Gerali et al., 2010; Cúrdia and Woodford, 2011; Gertler and
Karadi, 2011; Brunnermeier and Sannikov, 2014; Christiano et al., 2014; Del Negro et al., 2017. Our analysis
provides an argument for the benefits of testing these models empirically on the period of the Great Recession
and the ZLB.

5An exception is the capital quality shock proposed by Gertler and Kiyotaki (2010). This shock hits the
economy at very different points simultaneously to capture key features of the crisis. However, Boehl et al.
(2020) document a low explanatory power to this shock as its macroeconomic effects much depends on the
actual calibration.
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explaining business cycle dynamics. However, this does not preclude that a more thorough
modeling of microeconomic heterogeneity as pursued by the HANK literature could improve
upon the empirical performance.6

It has become a common practice to analyze the Great Recession and the ZLB period
through the lens of models that have been calibrated to or estimated on pre-crisis data
only (see, e.g., Gertler and Karadi, 2011; Christiano et al., 2014, 2015; Del Negro et al.,
2015b; Carlstrom et al., 2017). This approach has generated prominent results that shape
our profession’s understanding of the Great Recession, the role of financial frictions, and
the effect of unconventional monetary policy measures. However, we document that this
practice can generate misleading conclusions. We illustrate this by comparing the results
from above with a decomposition of the US post-crisis dynamics using a RANK model
estimated based on pre-crisis data. In this exercise, MEI shocks, which play an important
role in the pre-crisis sample, now substantially gain importance in accounting for the drop
in real activity during the Great Recession. They substantially weigh on consumption and
fully explain the collapse of investment. This exercise illustrates why previous studies that
employed pre-crisis data for their empirical analysis focused on disturbances to investment
financing as a driver of the crisis. It furthermore clarifies that the dominant role of the risk
premium shock in our interpretation of the last decades is not hardwired into the model,
but rather it is the interpretation of the dynamics of the US economy, that is favored by
the data.7

Across all models considered, the episode of missing disinflation is reflected by an esti-
mate of a flat Phillips curve.8 However, conducting estimates on a pre-crisis sample that
starts in the Great Moderation we find that the structural relationship between nominal
and real aggregates already weakens before the crisis. Our observation suggests that the
link between inflation and economic activity is not well captured in the workhorse models
of contemporary monetary theory. Recently, several paper have attempted to resuscitate
the Phillips Curve by including financial frictions. In Christiano et al. (2015) and Gilchrist
et al. (2017), increased refinancing costs drive firms to raise their prices and prevented a
severe disinflation. While in our models, recessionary MEI and risk shocks can in principle
generate inflationary pressure, their weight in the estimation of the crisis sample is not suf-
ficient to address the missing disinflation puzzle. Thus, the inclusion of financial frictions
does not revive the Phillips curve, nor does accounting for a binding ZLB.

A small number of papers has recently analyzed the Great Recession through the lens
of estimated macroeconomic models with an endogenously binding ZLB. The estimation
of DSGE models with a binding ZLB was pioneered by work on small-scale NK models.9

Gust et al. (2017) estimate a reduced version of the RANK model that is solved via global
methods. In addition to this work, using the set of methods described in Boehl (2020b)
allows us to consider the full version of the RANK model with the usual bells and whistles,
and to extend the analysis to the role of the model extensions. Kulish et al. (2017) estimate

6For instance, Bayer et al. (2019) recently estimate a HANK model on US data and stress the importance
of idiosyncratic income risk and portfolio liquidity for macroeconomic dynamics. Our TANK model naturally
cannot capture these effects. However, in contrast to Bayer et al. (2019), we include the ZLB into our
estimation, thereby capturing a different key factor for macroeconomic dynamics in our analysis.

7The finding of the importance of risk premium shocks is in line with results by Kulish et al. (2017) and
Gust et al. (2017).

8This observation fueled a literature on the Missing Deflation Puzzle. See, e.g., Hall (2011), King and
Watson (2012).

9See, e.g., Keen et al. (2017), Borağan Aruoba et al. (2018), Plante et al. (2018).
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a similar RANK-type model than we do, and focus on the role of forward guidance effects.
Our analysis touches a different domain as we study the business cycle implications and
the empirical performance of various model extensions. Fratto and Uhlig (2020) provide for
a counterexample and deliberately ignore the ZLB constraint in their analysis of the last
decades. The authors acknowledge that their approach may provide misleading results for
the historical shock decomposition. As such, the ZLB may not only change the size but also
potentially the direction of economic effects.

Lastly, a highly policy relevant issue is the macroeconomic effect of the massive interven-
tions of the Federal Reserve in asset markets in response to the financial crisis. However, a
structural investigation on the role of unconventional monetary policy requires a much more
focussed analysis. Boehl et al. (2020) study the empirical effects of quantitative easing poli-
cies within the context of an estimated large-scale model with financial frictions and several
channels for the real effects of asset purchases. They find that quantitative easing mod-
erately indeed stimulated real activity via investment, but lasted negatively on aggregate
consumption and had mildly deflationary effects.

The rest of the paper is as follows: Section 2 sketches the model and the employed
extensions. Section 3 briefly lays out the numerical methods and our choices on data and
priors. Section 4 presents the results of our estimations. Section 5 presents the interpretation
of business dynamics within RANK and discusses the role of the financial frictions and hand-
to-mouth consumers as extensions to the benchmark framework. Section 7 concludes.

2 Models

We employ the canonical medium-scale framework by Smets and Wouters (2007) as a
baseline and allow for two model extensions: hand-to-mouth consumers, that are unable to
save and only consume their current-period wage income, and financial frictions in the vein
of Bernanke et al. (1999). We dub the model with only a representative agent the RANK

model to distinguish it from our two-agent new Keynesian (TANK) model. The model
vintage including financial frictions will be referred to as financial representative agent NK
model – FRANK.10 The full set of linearized equilibrium conditions is delegated to the
Appendix.

2.1 The TANK extension

The TANK model therefore features Ricardian and hand-to-mouth households. We
assume that, for any given reason, a share λ of households does not have any savings
technology at its disposal and therefore consumes whatever it earns from its labor services
provided.11 The linearized budget constraint of hand-to-mouth consumers simply reads

cHt = wt + lHt , (1)

with cHt and lHt denoting hand-to-mouth agents’ consumption and labor supply, and wt being
the real wage. We assume that Ricardian and hand-to-mouth consumers share the same

10In Appendix Appendix A we additionally, we present estimation results for FTANK, a two-agent version
of FRANK.

11In contrast to HANK, the TANK model does not capture uncertainty effects or time-variations of the
share of constrained agents on consumption.
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preferences and are represented by the same labor unions in the wage formation process.
Aggregate consumption and labor hours can be obtained in the linearized form as

ct = λcHt + (1− λ)cRt , (2)

lt = λlHt + (1− λ)lRt , (3)

where ct and lt are aggregate consumption and labor, and the superscript R denotes the
Ricardian type.

2.2 Financial Frictions

The second extension that we consider is the inclusion of frictions in financial markets.
Here, we adopt the modeling choices by Del Negro et al. (2015b), who build on the work
of Bernanke et al. (1999), De Graeve (2008) and Christiano et al. (2014). In this model,
entrepreneurs obtain loans from frictionless intermediaries, which in turn receive their funds
from household at the riskless interest rate. In addition to the loans, entrepreneurs use
their own net worth to finance the purchase of physical capital, that they rent out to
intermediate good producers. Entrepreneurs are subject to idiosyncratic shocks to their
success in managing capital. As a consequence, their revenue might fall short of the amount
needed to repay the loan, in which case they will default on their loan. In anticipation
of the risk of entrepreneurs’ default, financial intermediates pool their loans and charge a
spread on the riskless rate to cover the expected losses arising from defaulting entrepreneurs.
Crucially, the spread of the loan rate r̃kt over the risk free nominal interest rate, rt, depends
on the entrepreneurial leverage and can be written as

Et[r̃
k
t+1 − rt] = ut + ζsp,b(qt + kt − nt) + σ̃ω,t. (4)

Here, ut is the risk premium shock on the housholds borrrowing rate, qt is the price of
capital, kt is the capital stock and nt denotes entrepreneurial net worth. σ̃ω,t is a shock
to the entrepreneurs’ riskiness and follows an AR(1) process - the risk shock introduced by
Christiano et al. (2014). Thus, the loan spread is defined as a function of the entrepreneurs’
leverage and their riskiness, which is determined by the dispersion of the idiosyncratic shocks
to entrepreneurs. Note that if the elasticity of the loan rate to the entrepreneurs’ leverage,
ζsp,b, is set to zero, we are back to the case without financial frictions.

The evolution of aggregate entrepreneurial net worth is described by

nt = ζn,r̃k(r̃
k
t − πt)− ζn,r(rt−1 − πt) + ζn,qk(qt−1 + kt−1) + ζn,nnt−1 −

ζn,σω

ζsp,σω

σ̃ω,t−1. (5)

where πt is the inflation rate. Equation (5) links the accumulated stock of entrepreneurial
net worth to the real return of renting out capital to firms, the riskless real rate, its capital
holdings, its past net worth and variations in riskiness. The coefficients ζn,r̃k , ζn,r, ζn,qk,
ζn,σω

, and ζsp,σω
are derived as in Del Negro et al. (2015b).

3 Methodology and Data

When including episodes of a binding ZLB in the sample, the estimation of DSGE models
poses a host of different technical challenges. These are related to the solution, likelihood
inference, and estimation of the model in the presence of an occasionally binding constraint
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(OBC). While methods to solve models with OBCs exists, and likewise nonlinear filters
are available, the combination of both is computationally very expensive for medium-scale
models. Before we turn to our estimation results, we briefly summarize the set of novel
methods that allow us to conduct an estimation of medium-scale models, that we consider,
in the presence of a binding ZLB. Secondly, this section describes our choices with regard
to the data, calibrated parameters, and priors used in the empirical analysis.

3.1 Solution method

Throughout this paper we use the solution method for OBCs presented in Boehl (2020b).
This section sketches the overall idea of this method. We refer to the original paper for
details. First, the piecewise linear model must be cast in the form

N

∣∣∣∣
xt

wt

∣∣∣∣+ cmax

{
b

∣∣∣∣
xt

wt

∣∣∣∣ , r̄
}

= Et

∣∣∣∣
xt+1

vt

∣∣∣∣ , (6)

where vt is an (n × 1) vector at the end of period t that contains all the (latent) state
variables, wt = vt−1 + Ξεt the state from last period augmented by the vector of current
shocks, and xt is an (m×1) vector containing all forward looking variables. N is the system
matrix with dimension (n+m)×(n+m). r̄ is the minimum value of the constrained variable
rt, which in our case is the nominal interest rate. b is a row vector of dimension 1× (n+m),
which determines rt in terms of (xt,wt)

⊺. In this paper this is the monetary policy rule).
The (n+m)× 1 vector c contains the effects of rt onto all other variables. Further, denote
by the two integer values k and l the expected numbers of periods that the system will
remain at the ZLB and, respectively, the expected number of periods before the ZLB binds.

It can be shown that given the above specification of the system, the rational expectations
solution for the system state v in period t+ s, depending on the state wt at the beginning
of period t and the expectations on k and l can be expressed in closed form as

Ls(l, k,wt) =Nmax{s−l,0} (N+ cb)
min{l,s}

S(l, k,wt)

+ (I−N)−1(I−Nmax{s−l,0})cr̄
(7)

=

∣∣∣∣
xt+1+s

vt+s

∣∣∣∣ (8)

where

S(l, k,wt) =

{∣∣∣∣
xt

wt

∣∣∣∣ : QNk (N+ cb)
l

∣∣∣∣
xt

wt

∣∣∣∣ = −Q(I−N)−1(I−Nk)cr̄

}
. (9)

Q =
∣∣I −Ω

∣∣ for xt = Ωwt represents the linear rational expectations solution of the
unconstrained system as it can be obtained e.g. by the method of Klein (2000).

Search for the equilibrium values of {l, k} must be done numerically. A crucial advantage
of the above representation is that the simulation of anticipated equilibrium paths can be
avoided when iterating over {l, k}.12 Boehl (2020b) provides further methodological details
such as equilibrium conditions and numerical routines.

12This gain in computational efficiency marks an advantage over the prominent Occbin-Toolbox developed
by Guerrieri and Iacoviello (2015), which makes its use attractive for model estimation.
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The resulting transition function is linear for the region where the ZLB does not bind and
(increasingly) nonlinear when it binds. For the model presented here, the implementation
in the pydsge package (Boehl, 2020c). will find the state-space representation for about
80.000 particles draws per second and CPU.

3.2 Filtering and Estimation Method

Proper estimation and identification of the parameters of the model requires a Bayesian
filter, i.e. a filter that approximates the state of the system given uncertainty about initial
states and about potential measurement errors. For this purpose, we use the transposed-
ensemble Kalman filter (TEnKF) also introduced in Boehl (2020b). This filter is a hybrid
of the particle filter and Kalman filter technology. Similar to the particle filter, a set of
points (the ensemble) is sent through the transition function during the prediction step.
However, instead of re-sampling (as with the particle filter), the TEnKF approximates a
state-dependent system matrix which can be used within a Kalman-like updating step.
The TEnKF allows to efficiently approximate the state distribution of large-scale nonlinear
systems with only a few hundred particles. The paper also suggests a nonlinear path-
adjustment smoother (NPAS) to calculate the smoothed/historic shock innovations.13

TEnKF and NPAS are implemented in the econsieve package (Boehl, 2020a). Com-
pared with the particle filter, the TEnKF also works with very small measurement errors.
Importantly, it also works with a small number of particles thereby reducing computational
costs.14 In contrast to the inversion filter used in Guerrieri and Iacoviello (2017), the TEnKF
is a full Bayesian filter. The inversion filter does not allow for uncertainty on the initial
states, which has the drawback that bad initial values can result in large approximation
errors.15

For posterior sampling we apply differential evolution Monte Carlo Markov chain meth-
ods (Ter Braak, 2006; ter Braak and Vrugt, 2008, DE-MCMC). The DE-MCMC method
is a class of ensemble MCMC methods which, instead of using a single or small number of
state-dependent chains (as e.g. in the Metropolis algorithm), relies on a large number of
chains (the “ensemble”). Similar ensemble methods have been extensively applied in par-
ticular in astrophysics. The main advantage of these methods is that they are self-tuning,
easy to parallelize, robust against local maxima, which allows to use them to sample from
oddly-shaped and potential multimodal distributions. This is of particular importance as
we use quite short data samples with potential systemic breaks. For each estimation, we
initialize an ensemble of 200 particles with the prior distribution and run 2500 iterations.
Of these, we keep 500 as a representation of the posterior distribution.

3.3 Data and Priors

For the quantitative analysis of the Great Recession and its aftermath, our baseline
sample ranges from 1998:I to 2019:III. To our best knowledge, we are the first to include the
late 2010’s in the sample, which also contains the exit from the ZLB at the end of 2015. Our

13The NPAS builds two steps on top of the TEnKF: the first step is an ensemble version of the Rauch-
Tung-Striebel smoother (Rauch et al., 1965). For the second step, iterative global optimization methods are
used to recover the shock innovations that fully respect the nonlinear transition function while taking the
approximated distribution of smoothed states into account.

14For all estimations and for the numerical analysis we use an ensemble of 400 particles.
15A learning period will not change this property as, in the absence of potential measurement errors, the

course of the dynamics is deterministic.
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benchmark sample is shorter than, e.g., in Gust et al. (2017), or Fratto and Uhlig (2020),
who as well analyze the Great Recession in estimated models. The reason is that we want
our estimation to capture idiosyncrasies of the episode in which the effective lower bound
was binding, in particular the persistence of endogenous and exogenous variables, the role
of policy, and the slope of the Phillips Curve. For this purpose, using a longer sample bears
the risk of misspecification.16 Throughout our analysis we also refer to alternative data
vintages.

We conduct estimations with seven and eight observables. The seven observables that
are used throughout all estimations in the paper are real GDP growth, real consumption
growth, real investment growth, labor hours, the log change of the GDP deflator, real wage
growth, and the Federal Funds Rate. Additionally, we present results for estimations in
which we add the Gilchrist and Zakraǰsek (2012) spread (GZ-spread, henceforth).17

The measurement equations that relate the model variables to our data series are

Real GDP growth = γ + (yt − yt−1), (10)

Real consumption growth = γ + (ct − ct−1), (11)

Real investment growth = γ + (it − it−1), (12)

Real wage growth = γ + (wt − wt−1), (13)

Labor hours = l + lt, (14)

Inflation = π + πt, (15)

Federal funds rate = (
π

βγ−σc

− 1) ∗ 100 + rt. (16)

When we also add the spread as an observable, we specify

GZ-spread = spread+ Et[r̃
k
t+1 − rt]. (17)

The construction of the observables is mostly standard and delegated to Appendix B.
Three aspects are worth mentioning. First, for our benchmark estimations, we follow Jus-
tiniano et al. (2010) and include durable consumption in our investment series. As observed
by Erceg and Levin (2006), durable consumption resembles investment in its behaviour over
the business cycle. We find that including this choice generally improves the ability of the
model to explain the data.

As a consequence, the strong fall in durable consumption during the Great Recession
contributes to the sharp decrease in the investment series, whereas the decline in the con-
sumption series at that time is somewhat dampened.Secondly, as in Boehl et al. (2020),
we use a trailing MA(5) of the civilian non-institutional population index to normalize real
quantities. This helps us to purge our observables of jumps in the index that reflect artifacts
in its construction rather than the underlying economic fundamentals. Lastly, we set the
empirical lower bound of the nominal interest rate within the model to 0.05% quarterly.

16Naturally, using a shorter sample yields less data observations. Yet, our sample is still larger than e.g.
in Smets and Wouters (2003).

17For the computation of the spread, Gilchrist and Zakraǰsek (2012) consider a broad set of loans to firms
with different credit risk and compare the interest rate paid on each individual loan with the costs that the
government would have had to pay on a loan with a comparable maturity. The GZ-spread is the average
over these individual credit spreads.
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Setting it exactly to zero would imply that the ZLB never binds in our estimations, as the
observed series for the FFR stays strictly above zero. Our choice maintains that the ZLB
is considered binding throughout the period from 2009:Q1 to 2015:Q4. For the observable
Federal Funds Rate we cut off any value below 0.05. This maintains that any observable
value is also reachable for the model. Formally, we set the lower bound for the quarterly
nominal rate r̄ = −100( π

βγ−σc
− 1) + 0.05, where π is gross inflation and the parameters

γ and σc denote the steady state growth rate and the coefficient of relative risk aversion,
respectively.

We assume small measurement errors for all variables with a variance that is 0.01 times
the variance of the respective series. Since the Federal Funds rate is perfectly observable
(though on a higher frequency) we divide the measurement error variance here again by 100.
Hence, the observables are de facto matched perfectly.

In the calibration of some parameters and the choice of the priors for the estimation of
the others we stick as closely as possible to the previous literature. For the parameters of
RANK we rely on the choices of Smets and Wouters (2007). For the parameters associated
with the extension of the financial sector we use the priors employed by Del Negro et al.
(2015b). The TANK model only requires one additional prior for λ. Here, we choose for the
prior a beta distribution with a mean of 0.3 and a standard deviation of 0.1. Our prior mean
is close to the roughly 31 % reported by Kaplan et al. (2014) as the combined share of poor
and wealthy hand-to-mouth agents in the US. This is also within close range to estimates
by Coenen and Straub (2005) and Fève and Sahuc (2017), but slightly higher than the value
estimated by Coenen et al. (2013).

In the estimations on the crisis sample, we follow Kulish et al. (2017) in the choice of
our prior for γ. Importantly, they opt for a tighter prior for this parameter than Smets and
Wouters (2007). Arguably the economy deviated strongly and persistently from its steady
state during the Great Recession. In order to dampen the data’s pull of the parameter down
to the sample mean, we therefore prefer the tight prior as well.18

4 Estimation Results

Our main focus is on estimations on the crisis sample from 1998:I to 2019:III. We compare
parameter estimates across models and contrast them with the estimates for a pre-crisis
sample from 1983:I to 2008:IV. This pre-crisis sample is a good candidate because it is
quite frequently used in the literature for two reasons: it avoids the Great Inflation as well
as the methodological challenge of accounting for a binding ZLB after 2008. Table A.5
summarize the posterior for model parameters for the crisis sample. The three main models
we consider are RANK, TANK, and FRANK. Parameter estimates for the pre-crisis sample
across models are reported in Table A.6. 19 Overall we find that parameter estimates are
quite robust to the model extensions, however there are meaningful systematic differences
between the pre-crisis and the crisis estimates.

Across models, we find that the coefficient of relative risk aversion σc has decreased from
means between 1.260 and 1.469 in the pre-crisis sample to slightly less then unity in the crisis
sample. Similarly, Kulish et al. (2017), who also include the last decade in their estimation,

18For wider priors we confirm unrealistically low estimates of the trend growth rate.
19We provide additional parameter estimates for FTANK and other variations of the financial friction

models, as well as for samples from 1983–2019 in Table A.9.

10



Sample from 1998 to 2019

Prior Posterior
RANK TANK FRANK

dist. mean sd/df mean sd mode mean sd mode mean sd mode

σc CRRA normal 1.500 0.375 0.930 0.081 0.882 0.891 0.046 0.871 0.980 0.114 1.161
σl Labor supply normal 2.000 0.750 1.753 0.459 1.315 1.518 0.431 1.276 1.764 0.409 1.454
βtpr Discount factor gamma 0.250 0.100 0.158 0.055 0.141 0.154 0.055 0.118 0.138 0.045 0.137
h Habit beta 0.700 0.100 0.833 0.027 0.839 0.839 0.025 0.849 0.755 0.048 0.666
S′′ Inv. adj. cost normal 4.000 1.500 5.287 0.914 4.926 5.420 0.928 4.971 4.996 1.007 3.713
ιp Price indexaation beta 0.500 0.150 0.192 0.066 0.166 0.180 0.062 0.190 0.218 0.077 0.288
ιw Wage indexation beta 0.500 0.150 0.371 0.112 0.426 0.398 0.123 0.429 0.309 0.101 0.344
α Capital share normal 0.300 0.050 0.168 0.013 0.175 0.167 0.012 0.171 0.173 0.013 0.179
ζp Price Calvo beta 0.500 0.100 0.852 0.033 0.840 0.850 0.033 0.861 0.920 0.027 0.927
ζw Wage Calvo beta 0.500 0.100 0.710 0.044 0.678 0.691 0.047 0.681 0.766 0.050 0.771
Φp Fixed cost normal 1.250 0.125 1.254 0.076 1.249 1.251 0.079 1.254 1.303 0.074 1.411
ψ Capital Utilization beta 0.500 0.150 0.757 0.080 0.802 0.759 0.079 0.751 0.763 0.071 0.749
φπ Mon. policy: inflation normal 1.500 0.250 1.353 0.218 1.512 1.361 0.218 1.386 1.101 0.196 0.900
φy Mon. policy: gap normal 0.125 0.050 0.207 0.029 0.190 0.196 0.027 0.174 0.237 0.027 0.220
φdy Mon. policy: growth normal 0.125 0.050 0.170 0.040 0.165 0.172 0.041 0.174 0.163 0.042 0.170
ρ Mon. policy: smoothing beta 0.750 0.100 0.816 0.042 0.833 0.818 0.040 0.809 0.751 0.039 0.711
ζspb Leverage elast. of spread beta 0.050 0.005 0.050 0.004 0.050
λ Share of h2m agents beta 0.300 0.100 0.227 0.075 0.286
ρr AR(1) monetary beta 0.500 0.200 0.754 0.088 0.710 0.737 0.090 0.760 0.493 0.079 0.452
ρg AR(1) fiscal beta 0.500 0.200 0.918 0.019 0.915 0.916 0.019 0.902 0.941 0.016 0.959
ρz AR(1) technology beta 0.500 0.200 0.979 0.013 0.982 0.982 0.012 0.986 0.964 0.025 0.977
ρu AR(1) risk premium beta 0.500 0.200 0.866 0.022 0.871 0.867 0.022 0.881 0.890 0.023 0.891
ρi AR(1) MEI beta 0.500 0.200 0.602 0.127 0.528 0.572 0.100 0.573 0.916 0.024 0.938
ρp AR(1) price Markup beta 0.500 0.200 0.639 0.090 0.679 0.622 0.103 0.617 0.441 0.199 0.666
ρw AR(1) wage Markup beta 0.500 0.200 0.455 0.097 0.369 0.449 0.091 0.476 0.499 0.093 0.417
µp MA price markup beta 0.500 0.200 0.315 0.121 0.300 0.345 0.141 0.257 0.403 0.149 0.391
µw MA wage markup beta 0.500 0.200 0.255 0.090 0.166 0.246 0.081 0.259 0.316 0.093 0.236
ρgz Fiscal technology normal 0.500 0.250 0.607 0.085 0.646 0.615 0.089 0.672 0.479 0.101 0.340
σr Std. dev. monetary IG 0.100 2.000 0.106 0.017 0.122 0.110 0.021 0.112 0.173 0.045 0.189
σg Std. dev. fiscal IG 0.100 2.000 0.222 0.025 0.208 0.220 0.024 0.214 0.255 0.024 0.287
σz Std. dev. technology IG 0.100 2.000 0.399 0.043 0.412 0.396 0.038 0.399 0.378 0.042 0.424
σu Std. dev. risk premium IG 0.100 2.000 0.681 0.148 0.626 0.688 0.161 0.588 0.432 0.104 0.339
σi Std. dev. MEI IG 0.100 2.000 0.881 0.276 1.041 0.940 0.257 0.876 0.533 0.059 0.618
σp Std. dev. price Markup IG 0.100 2.000 0.184 0.058 0.139 0.204 0.078 0.173 0.411 0.152 0.182
σw Std. dev. wage Markup IG 0.100 2.000 1.272 0.294 1.487 1.287 0.279 1.176 1.133 0.222 1.289
γ Trend growth normal 0.440 0.050 0.382 0.036 0.386 0.379 0.038 0.392 0.391 0.033 0.393

l ME constant: labor normal 0.000 2.000 0.997 0.634 1.099 1.179 0.651 1.356 1.395 0.643 2.243
π ME constant: inflation gamma 0.625 0.100 0.632 0.059 0.659 0.645 0.057 0.688 0.603 0.060 0.581

spread ME constant: spread normal 0.500 0.100 0.331 0.064 0.322

Table 1: Comparison of estimation results across models for the crisis sample (1998–2019).

11



Sample from 1983 to 2008

Prior Posterior
RANK TANK FRANK

dist. mean sd/df mean sd mode mean sd mode mean sd mode

σc CRRA normal 1.500 0.375 1.469 0.147 1.468 1.388 0.133 1.298 1.424 0.126 1.444
σl Labour supply normal 2.000 0.750 2.361 0.539 2.555 2.062 0.513 1.849 2.519 0.507 2.786
βtpr Discount Factor gamma 0.250 0.100 0.147 0.046 0.146 0.147 0.049 0.142 0.143 0.048 0.123
h Habit beta 0.700 0.100 0.689 0.048 0.699 0.710 0.040 0.688 0.669 0.042 0.670
S′′ Inv. adj. cost normal 4.000 1.500 5.622 1.035 6.023 5.727 1.029 4.939 6.176 0.982 5.926
ιp Price indexation beta 0.500 0.150 0.309 0.100 0.311 0.344 0.106 0.323 0.355 0.130 0.385
ιw Wage indexation beta 0.500 0.150 0.424 0.127 0.476 0.414 0.129 0.371 0.373 0.121 0.600
α Capital share normal 0.300 0.050 0.214 0.011 0.218 0.213 0.011 0.210 0.226 0.011 0.226
ζp Price Calvo beta 0.500 0.100 0.845 0.032 0.832 0.858 0.033 0.855 0.847 0.031 0.841
ζw Wage Calvo beta 0.500 0.100 0.783 0.047 0.769 0.792 0.045 0.797 0.833 0.038 0.859
Φp Fixed Cost normal 1.250 0.125 1.531 0.072 1.603 1.551 0.070 1.554 1.525 0.063 1.521
ψ Capital utilization beta 0.500 0.150 0.631 0.089 0.643 0.625 0.091 0.685 0.545 0.069 0.485
φπ Mon. policy: inflation normal 1.500 0.250 1.294 0.245 1.436 1.319 0.235 1.067 1.311 0.217 1.273
φy Mon. policy: gap normal 0.125 0.050 0.222 0.040 0.216 0.212 0.038 0.235 0.196 0.033 0.206
φdy Mon. policy: growth normal 0.125 0.050 0.203 0.040 0.199 0.205 0.041 0.214 0.198 0.038 0.216
ρ Mon. policy: smoothing beta 0.750 0.100 0.710 0.044 0.752 0.713 0.041 0.638 0.734 0.036 0.744
ζspb Leverage elast. of spread beta 0.050 0.005 0.051 0.004 0.048
λ Share of h2m agents beta 0.300 0.100 0.176 0.052 0.151
ρr AR(1) monetary beta 0.500 0.200 0.813 0.061 0.771 0.813 0.061 0.855 0.696 0.070 0.715
ρg AR(1) Ffscal beta 0.500 0.200 0.972 0.013 0.975 0.972 0.013 0.981 0.939 0.031 0.948
ρz AR(1) technology beta 0.500 0.200 0.955 0.015 0.940 0.947 0.017 0.950 0.941 0.021 0.963
ρu AR(1) risk premium beta 0.500 0.200 0.736 0.090 0.754 0.700 0.083 0.797 0.691 0.076 0.785
ρi AR(1) MEI beta 0.500 0.200 0.767 0.061 0.806 0.807 0.048 0.793 0.868 0.028 0.883
ρp AR(1) price markup beta 0.500 0.200 0.764 0.082 0.827 0.749 0.100 0.821 0.728 0.106 0.801
ρw AR(1) wage markup beta 0.500 0.200 0.673 0.109 0.688 0.642 0.121 0.694 0.588 0.110 0.650
µp MA price markup beta 0.500 0.200 0.611 0.144 0.603 0.642 0.115 0.601 0.514 0.140 0.557
µw MA wage markup beta 0.500 0.200 0.393 0.152 0.396 0.423 0.158 0.443 0.391 0.156 0.386
ρgz Fiscal technology normal 0.500 0.250 0.352 0.078 0.423 0.351 0.079 0.324 0.389 0.079 0.382
σr Std. dev. monetary IG 0.100 2.000 0.130 0.015 0.141 0.131 0.015 0.123 0.151 0.021 0.138
σg Std. dev. fiscal IG 0.100 2.000 0.237 0.017 0.233 0.238 0.018 0.228 0.242 0.018 0.230
σz Std. dev. technology IG 0.100 2.000 0.308 0.028 0.316 0.309 0.027 0.285 0.316 0.027 0.300
σu Std. dev. risk premium IG 0.100 2.000 0.958 0.397 0.853 1.138 0.412 0.619 0.954 0.314 0.625
σi Std. dev. MEI IG 0.100 2.000 0.639 0.114 0.590 0.576 0.083 0.582 0.641 0.059 0.587
σp Std. ev. price markup IG 0.100 2.000 0.140 0.045 0.098 0.158 0.047 0.101 0.138 0.054 0.090
σw Std. dev. wage markup IG 0.100 2.000 0.457 0.100 0.420 0.523 0.153 0.459 0.591 0.148 0.511
γ Trend growth normal 0.440 0.050 0.463 0.025 0.460 0.466 0.024 0.473 0.412 0.027 0.427

l ME constant: labor normal 0.000 2.000 2.297 0.587 2.497 2.187 0.559 2.832 1.532 0.501 1.791
π ME constant: inflation gamma 0.625 0.100 0.703 0.065 0.704 0.693 0.065 0.706 0.599 0.065 0.613

spread ME constant: spread normal 0.500 0.100 0.472 0.064 0.438

Table 2: Comparison of estimation results across models for the sample before the crisis (1983–2008).
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Slope of the Phillips Curve

Sample RANK TANK FRANK FTANK

1998 – 2019 0.007 (0.004) 0.007 (0.003) 0.002 (0.002) 0.001 (0.0)
1983 – 2008 0.004 (0.002) 0.003 (0.002) 0.004 (0.002) 0.003 (0.001)
1983 – 2019 0.002 (0.001) 0.002 (0.001) 0.002 (0.001) 0.002 (0.001)

Sample FRANK-R FTANK-R FRANK-Spread FTANK-Spread

1998 – 2019 0.01 (0.003) 0.011 (0.003) 0.001 (0.003) 0.001 (0.001)
1983 – 2008 0.004 (0.003) 0.004 (0.005) 0.099 (0.09) 0.004 (0.088)

Table 3: Comparison of the slopes of estimated Phillips Curves of the different models. Posterior means
with standard deviations in parenthesis. The short crisis sample (1998–2019) is the benchmark we focus on
in the main body.

find σc to be close to unity. A value of σc close to one mutes the effect of variations
in labor hours on consumption via the Euler equation, which is introduced through the
nonseperabilites in preferences. The reduction of this channel prevents the strong drop in
labor hours during the crisis to exert an excessive downwards pull on consumption.

The posterior mean values for habit formation, h, vary from from 0.755 (FRANK) to
0.839 (TANK) in the crisis sample. Across models, this is roughly 0.1 higher than in the
pre-crisis sample. In contrast, investment adjustment costs are lower for each model in the
crisis sample (between 4.996 and 5.287) than in the pre-crisis sample (between 5.612 and
6.176). This reflects the high volatility of investment relative to consumption observed in
the Great Recession.

The estimates of labor market parameters imply more flexibility of both labor and wages
in the Great Recession and at the ZLB than in prior decades. The posterior mean for the
inverse of the Frisch elasticity, σl, lies between 1.764 (FRANK) and 1.518 (TANK) in the
crisis sample, which is somewhat lower than in the pre-crisis sample, where it is estimated to
be slightly higher than 2 in all models. This implies a higher elasticity of labor supply during
the crisis and therefore a higher responsiveness to demand shocks. This allows for a quicker
decline in labor hours and labor income in the Great Recession. Additionally, in crisis
times, and in particular in models without financial frictions, the parameter governing wage
rigidities, ζw, is estimated to be lower than in the pre-crisis sample. Mean values here range
from 0.691 (TANK) to 0.766 (FRANK), allowing wages to respond faster to developments
in the economy. Our estimates of ζw come close to the value in Kulish et al. (2017), but
stand in contrast to the estimates of Gust et al. (2017) who obtain an wage adjustment cost
parameter of 4420 in a Rotemberg setting, which implies a virtually inexistent wage Phillips
curve.

The RANK estimates for the Calvo parameter of ζp = 0.852 and the gross price markup
of Φp = 1.254 support the general notion that the Phillips Curve has been flat in the last
decades. Table 3 summarizes the estimated slopes of the Phillips across different samples
and model vintages. At the mean, the slope of the Phillips Curve of RANK is estimated to
be 0.007. This is substantially lower than the estimate by Smets and Wouters (2007), who
find a slope coefficient of roughly 0.02. Our estimates provide evidence that the Phillips
curve has already been flattening out during the Great Moderation and has stayed flat at
the ZLB. This finding is robust to all model considered, including estimates of FRANK in
which we include a risk shock á la Christiano et al. (2014)(FRANK-R) and the GZ-spread
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(FRANK-Spread), and corroborated by estimates of Kulish et al. (2017), who start their
sample in the 80s and include the crisis period in their estimation.

The persistence parameter of the risk premium shock lies roughly in the range of 0.866 to
0.890 in the crisis sample. This is substantially higher than the estimates for the pre-crisis
sample, which vary around 0.7.20 This is not surprising as this shock plays a larger role for
the Great Recession and the ZLB period than for an analysis of the pre-crisis period. The
persistence parameter for MEI shocks displays substantial differences between models with
and without financial frictions. In RANK, its posterior mean value is 0.602, whereas for
FRANK it is at 0.916. This points at the more important role of MEI shocks in financial
friction models in the crisis, which we discuss in Subsection 5.2.

The share of hand-to-mouth agents, λ, is estimated to be around 0.227 in TANK. The
share of hand-to-mouth agents is a tad higher in the crisis sample, than in the pre-crisis
sample. This squares with the notion that credit constraints played a larger role for house-
holds in the Great Recession and its aftermath than in the previous decades. However the
posterior mean is below its prior, which, motivated by the estimates by Kaplan et al. (2014),
is set to 0.3. Our results suggest that high ad-hoc calibrations of the share at, e.g., 0.5,
which are often applied in the literature21, overstate the weight of hand-to-mouth consumers
in macroeconomic models.

5 Business Cycle Dynamics at the ZLB

The mortgage crisis, which culminated in the default of Lehman Brothers in September
2008, sent the US economy into a deep recession. Output, consumption, investment and em-
ployment plummeted in 2009. The drop in investment was particularly sharp in comparison
to the decline in consumption. However, while real activity collapsed, price dynamics did not
follow suit. The drop in inflation in the Great Recession was mild and short-lived, sparking
a lively debate on the missing deflation puzzle.22 As argued above, with the financial crisis
marking one, albeit complex, event, a good model should provide a parsimonious account
of this event in terms of a common causal driver of the occurrences during this period. Any
shock that can serve as such a common driver must therefore generate a pronounced drop
differential of investment and consumption, as well as the modest decline in inflation. In
this section we lay out that none of our models meets the challenge of attributing these key
features to a common source. At the end of the section, we discuss how the presence of a
joint propagation mechanism or the lack thereof in the model affects its empirical fit. We
show that against the gist of the literature, neither household heterogeneity nor financial
frictions improve upon the simple RANK model in terms of empirical fit.

5.1 The Great Recession through the lens of RANK

We start our discussion of business cycle dynamics at the ZLB by summarizing the main
implications, which result from the estimation of RANK on the crisis sample.

In the context of the estimated RANK model, risk premiums shocks are the most promi-
nent driver of the joint dynamics of key variables following the financial crisis. Figure 1

20For comparison in their estimate from 1966-2004, Smets and Wouters (2007) report a persistence pa-
rameter of 0.22 for the risk premium shock. Kulish et al. (2017), who include the recent decades in their
sample, report a persistence parameter of 0.95 for the shock.

21See, e.g., Gaĺı et al. (2007).
22See, e.g., Christiano et al. (2015), Del Negro et al. (2015b), Gilchrist et al. (2017).
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Figure 1: RANK Model estimated to 1998-2019. Decomposition of the smoothed time series into the
contribution of the different shocks. Note: Means over 250 simulations drawn from the posterior. The
contribution of each shock is normalized as in Appendix E.

illustrates the dominant role of risk premium shocks on the households’ borrowing rate,
ǫut , for macroeconomic dynamics following the Great Recession.23 It presents the historical
shock decompositions of key variables for the crisis sample. From 2009 on, persistently ele-
vated risk premiums account for almost the entire drop of aggregate consumption, weigh on
aggregate investment and inflation, and consequently are responsible for the long duration
of the ZLB spell for the nominal interest rate.

However, high risk premiums cannot fully account for the sharp drop in investment dur-
ing the Great Recession. While recessionary risk premium shocks do trigger a simultaneous
downturn of consumption and investment, they fail to match the drop differential of these
components, creating the need for an extra driver to make up for the missing decline in in-
vestment. In the case at hand, the initial decline of investment is triggered by recessionary
MEI shocks, ǫit, which at the trough account for roughly half of the collapse in investment.

Similarly, the decline of inflation during the Great Recession can only partly be at-
tributed to the increase in risk premiums. The estimated flat Phillips Curve prevents the
decline in real activity from generating substantial deflation, which requires price markup
shocks, ǫpt , to account for the inflation dynamics. These shocks govern the high-frequency

23The dominant role of risk premium shocks is corroborated by the generalized forecast error variance
decomposition, reported in Table D.11 in the appendix.
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Figure 2: Expected ZLB durations for RANK. The shaded area in the top panel represent 90% credible sets.
In the lower panels, the last bar to the right marks the probability of a duration of 10 or more quarters.

movements of inflation in the sample and account for the dip in inflation during the Great
Recession.24 The only modest decrease in inflation triggered a debate on the missing disin-
flation puzzle. Christiano et al. (2015) attribute some inflationary pressure to a persistent
decline in productivity relative to its pre-recession trend. In contrast, in our estimation,
which abstracts from a TFP-specific trend, the technology process, zt, is consistently mea-
sured to be positive. In addition, Christiano et al. (2015) as well as Gilchrist et al. (2017)
ascribe the missing inflation to higher refinancing costs of firms. We confirm that within
the RANK model, MEI shocks raise inflation by increasing the firms’ cost of investments.
However, the size of this effect is negligible according to our estimation. In our analysis,
similar to Del Negro et al. (2015b), the estimate of a flat Phillips Curve is responsible for the
lack of a steep decline in inflation. We view the reliance on MEI shocks and price markup
shocks as disparate exogenous drivers for the explanation of the dynamics of investment
and inflation in the years of the Great Recession constitutes a shortcoming of the RANK
model.25

The long duration of the ZLB is largely interpreted by our estimation as an endogenous
response of the central bank to the deterioration of fundamentals via the Taylor rule, rather
than to an active lower-for-longer policy.26 Figure 2 shows the dynamics and the distribution

24The relatively low estimate of φπ in the Taylor rule moderates the transmission of the volatile short-lived
effects of price markup shocks on inflation to the nominal interest rate, and in turn to economic activity.

25For an illustration of the exogenous shock process, see Figure K.22 in the appendix.
26In principle, our model allows for forward guidance shocks at the ZLB. However, as discussed in Appendix

G, we find that, in the absence of additional data input such as, e.g., term premia, nonlinear filters do not
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of the expected duration of the ZLB spell over the sample.27 The mean expected durations
vary between six and ten quarters throughout the ZLB years. Although we do not target, nor
use any prior information on the actual expectations of market participants on the duration
of the ZLB, for the most part they come remarkably close to the average expected durations
reported by the Blue Chip Financial Forecast and the Federal Reserve Bank of New York’s
Survey of Primary Dealers. In the first years of the ZLB, our mean estimates somewhat
overestimate expected durations, and around 2012, they are slightly too low. However,
the results of these surveys lie within the 90 % confidence intervals of our estimation for
almost all quarters. The lower panels of Figure 2 show the distributions of expected ZLB
durations at different points in time. In 2009:Q1, most of the probability mass lies on
durations of, or higher than, 8 quarters. The same holds for the first quarters of 2012 and
2013, for which survey data shows high expected durations as well. In contrast, for 2011:Q1
when our mean expected duration of seven quarters slightly exceeds the mean implied by
the Primary Dealer Survey, the distribution shows that considerable probability mass is
allocated to lower expected durations and the survey mean is within the confidence interval
of the RANK estimation.

The resulting estimated average expected durations are higher than those by Gust et al.
(2017), who obtain an average ZLB spell of merely 3.5 quarters. Like us they do not
incorporate survey data on duration expectation in the estimation of their model, which is
in several respects similar to ours, although smaller. A potential reason for the difference
in the resulting expected durations might be the treatment of the ZLB in the estimation.
As mentioned in Section 3.3, we set the empirical ZLB to 0.05% quarterly, whereas Gust
et al. (2017) choose exactly zero percent. This may be problematic as the Federal Funds
Rate never actually went all the way down to zero. In theory, their model is hence capable
of matching the observables without forcing the model to the zero lower bound. From this
angle it is surprising that in their smoothed state estimates, they hit the ZLB at all. We
suspect that this is due to the assumption of relatively large observation errors, which is
often necessary when employing the particle filter (see e.g. Atkinson et al., 2019).28

Kulish et al. (2017) use survey data to construct priors on expected durations, which
they estimate directly. While this procedure poses a challenge for parameter identification
by substantially extending the dimensionality of the parameter space, it eases matching
the observed dynamics of the expectations over the years at the ZLB. In contrast to the
aforementioned papers, our sample also covers the takeoff from the ZLB. The mean of the
smoothed nominal interest rate series leaves the ZLB a year after the actual ZLB period
ended. The model therefore interprets the very low federal fund rate in 2016 to have the
same effects on equilibrium dynamics as a binding ZLB. This might capture uncertainty
effects that could not explicitly included in our modelling approach.

5.2 FRANK: Challenges for financial friction modeling

We start this section by showing that the inclusion of the financial sector impairs the
ability of non-financial shocks to generate the observed collapse in investment during the

perform reliably well in identify forward guidance shocks at the ZLB. For a discussion of the effects of
unconventional monetary policy, see Boehl et al. (2020).

27For a discussion of the economic cost of a binding ZLB, see Appendix F. Closely related to the cost of
the binding ZLB is the decline in the natural rate, which is discussed in Appendix H.

28Their measurement errors variances are assumed to at least 10% of the variance of data sample, which
is a full magnitude higher than our assumed measurement errors (3 magnitudes for the Federal Funds Rate).
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Figure 3: IRFs to a risk premium shock in FRANK estimated for 1998-2019. In orange: estimated FRANK
with ζspb ≈ 0. In green: RANK. Note: Medians over 250 simulations drawn from the posterior. 90%
credible set for FRANK. Shock size is the posterior mean standard deviation for each model.

Great Recession. Subsequently, we show that financial shocks cannot fill in as main drivers
of the recessions, due to their inability to generate a substantial decline in consumption in
the estimated models. As a consequence, the models with financial frictions do not offer
a joint propagation mechanism for the behaviour of the components of aggregate demand.
This stands in contrast to the large theoretical literature that highlights the importance of
the inter-linkages between the real economy and the financial sector for the macroeconomic
dynamics following the financial crisis.

5.2.1 The role of the financial sector for the transmission of shocks

The inclusion of financial frictions alters the transmission of shocks in important ways.
Figure 3 shows the dynamic response of key variables to a risk premium shock. The differ-
ence between ‘FRANK’ and ‘low ζspb’ isolates the effect of the financial accelerator on the
transmission of the shock in an estimated FRANK model, whereas the difference between
‘RANK’ and ‘FRANK’ also includes the effect of changes in all parameter estimates.29 In all
cases, an exogenous increase of the risk premium on the households’ borrowing rate induces
a contraction in aggregate demand. The presence of financial frictions, however, amplifies
the drop in consumption and attenuates the drop in investment in response to the shock.
This worsens the shock’s ability to account for the observed drop differential of consumption
and investment in the Great Recession.

Why is that so? On impact, a risk premium shock reduces the price of capital and net
worth of entrepreneurs. As a consequence, their leverage increases and – accordingly – the

29In our discussion of financial frictions we focus on FRANK and omit the FTANK model as the role of
hand-to-mouth agents does not alter the key results.
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Figure 4: IRFs to a MEI shock in FRANK estimated for 1998-2019. In orange: estimated FRANK with
ζspb ≈ 0. In green: RANK. Note: Medians over 250 simulations drawn from the posterior. 90% credible
set for FRANK. Shock size is the posterior mean standard deviation for each model.

return on capital demanded by creditors. However, in the context of the estimated FRANK
model, the high return on capital induces a quick recovery of net worth (c.f. Equation
5). In contrast, the decline in the capital stock is more persistent. Hence, the increase in
leverage is short-lived and reverses after a few periods, while in the medium-run, the low
leverage reduces the required return on capital, and improves the investment climate. As the
investment decision is forward looking and rash adjustments of the capital stock are costly,
the outlook of a future investment boom already attenuates the fall of investment from
the onset. The attenuating role of financial frictions impairs the ability of the risk premium
shock to account for the dramatic fall of investment observed in the Great Recession without
simultaneously generating an excess decline in consumption. Thus, less weight is assigned
to these shocks, and more weight to MEI shocks, which must fill in to generate the strong
fall in investment.

As is shown in Figure 4, the estimated financial friction has a similar effect on the
transmission of recessionary MEI shocks: they increase the price of capital and raise en-
trepreneurial net worth, thereby lowering the spread. Again, the direct effect of the financial
sector is to dampen the decline in investment. Despite the financial attenuator, the decline
in investment is far stronger in the estimated FRANK model than in the estimated RANK
model due to shifts in other parameter estimates. Importantly, the estimate for the persis-
tence parameter ρi is higher in FRANK (0.916) than in RANK (0.602). In equilibrium, the
higher value of ρi implies a more persistent and substantial decline in investment, which
triggers a stronger drop in output and labor hours. The sharper decline in labor weighs on
consumption, which decreases directly on impact. The negative co-movement between in-
vestment and consumption is therefore removed. However, the fall in consumption is far too
modest to enable MEI shocks in FRANK to match the drop differential between investment
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Figure 5: FRANK Model estimated to 1998-2019. Decomposition of the smoothed time series into the
contribution of the different shocks. Note: Means over 250 simulations drawn from the posterior. The
contribution of each shock is normalized as in Appendix E.

and consumption.
Figure 5 shows that as a result, the dynamics of consumption and investment are driven

by two disparate sources of shocks. This represents a severe drawback for the FRANK
model’s appeal, as it moves farther away from providing a unifying account of macroeco-
nomic dynamics in the Great Recession than RANK. While the financial sector itself acts
as an attenuator for output and investment dynamics, the higher persistence in MEI shocks
in FRANK supports a more pronounced decline in aggregate demand thereby creating de-
flationary pressure. As with RANK, this pressure is too weak to cause the dip in inflation
during the Great Recession. Again, the inability of the model to account for the infla-
tion dynamics is associated with a flat Phillips Curve and variations in inflation are largely
attributed to exogenous fluctuations in the price markup.

5.2.2 Can risk shocks explain the Great Recession?

The difficulties of the MEI shock to generate one of the Great Recession’s key features – a
substantial, simultaneous drop of consumption and investment – is shared by a wide range of
financial shocks, that have been proposed in the literature. Like the MEI shock, they present
a disturbance to the intertemporal investment decision, or as labelled in Christiano et al.
(2015), the financial wedge. At odds with observed dynamics in the Recession, these shocks
stimulate consumption. This holds for instance by the contractionary credit shock, which
Carlstrom et al. (2017) employ in their analysis of the effects of unconventional monetary
policy. Similarly, recessionary wealth shocks raise households consumption in Carlstrom
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Figure 6: IRFs to a risk shock in FRANK-R and FRANK-S estimated for 1998-2019. Additionally the IRFS
to an MEI shock in the same FRANK-S estimate. Note: Medians over 250 simulations drawn from the
posterior with 90% credible sets. Shock size is the posterior mean standard deviation for each model.

and Fuerst (1997).30

Figure 6 displays this unappealing feature of a financial shock in our estimates, where
it triggers a negative co-movement of consumption and investment. For this illustration we
employ the risk shock, which was developed by Christiano et al. (2014). The risk shock
is an exogenous process driving changes in the volatility of cross-sectional idiosyncratic
uncertainty of entrepreneurs. The Figure results from two exercises, that we conduct in
order to investigate on the ability of this shock to improve our understanding of the Great
Recession and the ZLB period. First, we exchange the MEI shock in FRANK for the risk
shock and estimate the resulting model as before (FRANK-R). Secondly, we use FRANK
with both shocks and add the GZ spread as an additional observable in our estimation
(FRANK-S).31

An increase in entrepreneurial risk raises the spread and makes external funding less
affordable for entrepreneurs. Aggregate investment and the price of capital therefore both
drop, jointly with entrepreneurial net worth. In contrast to the MEI shock, which drives
Tobin’s Q and investment in opposite directions, the risk shock is therefore a demand shock
in the market for investment goods. The drop in investment demand lowers output and
hence labor hours. However, the latter are sufficiently stable so that the decline in the

30A prominent exception is the capital quality shock developed by Gertler and Kiyotaki (2010). This
shock was engineered to capture key features of the crisis and hits the economy at multiple distinct points
simultaneously.

31For details on the estimated parameters, interested readers are relegated to Table A.7 in Appendix A.
For completeness, we additionally conduct analogous estimations with our two-agent extension. The results
of the parameter estimates are reported in the same Table A.7 as well. Adding hand-to-mouth agents
however does not alter the main results of this section.
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Figure 7: FRANK-S Model – estimated including the GZ spread as observable – estimated to 1998-2019.
Decomposition of the smoothed time series into the contribution of the different shocks. Note: Means over
250 simulations drawn from the posterior. The contribution of each shock is normalized as in Appendix E.
The shock size is the posterior mean standard deviation for each model.

real rate dominates the consumption response in the short run in both estimations. With
regard of the post-2008 course of inflation, an appealing feature of the risk shock is that,
by raising the costs of capital, it increases marginal cost and thereby creates inflationary
pressure. This effect is particularly pronounced in FRANK-R. However, whereas the risk
shock speaks to the missing deflation puzzle, its implications for consumption dynamics are
at odds with the data.

For both, FRANK-R and in FRANK-S, the problem persists that consumption and in-
vestment dynamics following the Great Recession are explained by disparate sources within
the model. For FRANK-S this is illustrated in Figure 7, whereas the historical shock decom-
positions for FRANK-R are relegated to Figure I.19 in Appendix I. In both cases, the risk
premium shock remains the main source of movements in consumption. Notwithstanding,
for reasons discussed in Section 5.2.1, the financial accelerator undermines the risk premium
shock’s ability to account for investment dynamics and creates additional need for financial
wedge type of shocks.

Crucially, the role of risk shocks for macroeconomic dynamics in FRANK-S is negligible.
Of the risk shock and the MEI shock, the latter produces a response of consumption that
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is more in line with observations in the crisis. Consequently, MEI shocks take a more
prominent role in the explanation of investment dynamics than risk shocks. Increases in
entrepreneurial risk only play a notable role for the credit spread. In conjunction with
increasing risk premiums on households borrowing rates, they are responsible for the spike
of the credit spread in the financial crisis. Other than MEI shocks, recessionary risk shocks
increase the spread, which renders them unable to reconcile the very moderate spreads after
2010 with the continuing depression of investment. The decomposition of inflation and
interest rate dynamics is almost the same as in FRANK.32 Adding the risk shock and the
spread as an observable therefore does not improve upon the explanation of macroeconomic
dynamics as given by RANK. As the risk shock in our exercise stands in for a range of
financial shocks that fail to trigger a fall in consumption, it appears that in general the
financial wedge may not be an excellent candidate for providing a parsimonious narrative
of the Great Recession.

5.3 The role of hand-to-mouth agents

The recent years have also seen a surge of interest into the interaction of microeconomic
heterogeneity and macroeconomic dynamics. While a full-fledged HANK model exceeds the
scope of our analysis, we introduce hand-to-mouth consumers, thereby extending our RANK
to a TANK model. Hand-to-mouth consumers capture the fact that financial constraints
affected the dynamics of households consumption spending. As their income is determined
solely by the labor market, the introduction of these agents ties aggregate demand closer
to labor market outcomes.33 A contraction in investment therefore should exert a stronger
downward pull on consumption via the decline in labor income of households.

However, our analysis implies that the effect of hand-to-mouth agents on the results
for the crisis sample is rather small. Parameter estimates as well as the historical shock
decomposition of the crisis for TANK (see Figure I.18 in Appendix I) are very similar to
the results for RANK.34 The low relevance of hand-to-mouth consumers is mainly due to
the presence of other frictions in our model that make it difficult to identify the effects
of hand-to-mouth agants on business cycle dynamics: non-separable preferences create an
additional link between labor hours and consumption via the Euler equation of Ricardian
agents; sticky wages prevent sharp movement in the income of hand-to-mouth consumers and
hence their spending; lastly, habit formation strongly attenuates swings in the consumption
of constrained agents during the crisis.

Figure 8 illustrates that the transmission of the risk premium shock, which again dom-
inates macroeconomic dynamics in the crisis, is hardly altered. In RANK, the reaction of
consumption, a key component of aggregate demand, is determined by the intertemporal
substitution of current for future spending, the price of which is determined by the house-
holds savings (or borrowing) rate. Adding hand-to-mouth consumers to the model dampens
the direct effect of risk premium shocks on aggregate consumption, as a lower share of
households can adjust its consumption decision to changes in the interest rate. At the same
time, hand-to-mouth consumers add an indirect effect to the transmission of risk premium

32In FRANK-R the slope of the Phillips curve is steeper and real shocks play a larger role for inflation
dynamics. As displayed in Figure I.19 in Appendix I, the inflationary impact of risk shocks becomes notable.

33In our framework, we keep the labor market simple. For a full-fledged account of its dynamics during
the Great Recession., see Christiano et al. (2015).

34We confine our discussion in the main body to the results of TANK, as the results with regards to the
role of hand-to-mouth consumers hold with FTANK as well.
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Figure 8: IRFs to a risk premium shock in TANK estimated for 1998-2019. Compared with mean IRFs to
RANK. Note: Medians over 250 simulations drawn from the posterior with 90% credible set for TANK.
Shock size is the posterior mean standard deviation for each model.

shocks, because their spending is tied to current income, which closely tracks the fluctua-
tions in real activity, that are caused by risk premium shocks as well. If the amplification
and attenuation via the indirect and direct effect cancel out, hand-to-mouth consumers have
no effects on the transmission of this shock.35

Whether the indirect effect outweighs the direct effect mainly depends on the estimates of
labor market parameters. The estimated value of the Calvo parameter for wage setting, ζw,
implies a substantial wage rigidity, that attenuates the reaction of real wages to aggregate
demand and therefore fluctuations in hand-to-mouth agents’ spending. This substantially
reduces the indirect effect. Another important parameter is σl. In the extreme case of
σl = 0, the consumption of Ricardian and hand-to-mouth agents move closely together
since, due to the assumption of identical preferences, they are tied together via the same
labor supply curve. All else equal, the higher σl – the less elastic the labor supply – the
more ch,t differs from cr,t, and the stronger the fall in wages when labor hours drop. Lower
wages in turn further reduce hand-to-mouths agents’ budget and hence their consumption.
For the posterior estimate of σl of TANK in the crisis sample, the fall in ch is only a tad
more pronounced than that of cr. In equilibrium this slightly lowers the policy rate, which
dampens the fall of cr, and increases the wedge between the consumption of both types of
agents.36 However, combined with their low share in households, the diverging spending

35A related intuition has been discussed by Bilbiie (2019) in the context of monetary policy shocks, which
affect the households saving (borrowing) rate in a similar manner.

36This type of externality imposed by hand-to-mouth consumers on Ricardian households, which arises
due to the feedback effects of hand-to-mouth spending on aggregate demand and the interest rate is discussed
in Bilbiie (2019).
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Figure 9: TANK Model estimated to 1983–2008. Decomposition of time series into the contribution of the
different shocks. Note: Means over 250 simulations drawn from the posterior. The contribution of each
shock is normalized as in Appendix E.

behavior of hand-to-mouth consumers is not sufficient to have a substantial impact on
aggregate dynamics in the crisis sample.37

While the irrelevance of hand-to-mouth consumers for the crisis sample is largely due
to the prominence of the risk premium shock, other exogenous driving forces can induce a
stronger divergence of the behavior of household types. A case in point are wage markup
shocks. These shocks only play a small role in the crisis sample, but feature more promi-
nently before the Great Recession. We illustrate this in Figure 9, which shows the historical
shock decomposition of that period for TANK. Here, MEI shocks drive investment and con-
sumption dynamics to a large extent while wage markup shocks explain a significant share
of real wage and inflation dynamics.38 In the mid-80s, positive wage markup shocks raise
the real wage and support a positive comovement of wages with aggregate demand compo-

37Additionally, the differences in the consumption response of household types is illustrated for the trans-
mission of MEI shocks in RANK and TANK in Figure J.21 in Appendix J. Whereas Ricardian consumption
increases in response to the shock, consumption of hand-to-mouth consumers follows labor market variables
and declines. In principle, hand-to-mouth consumers could help to lower the aggregate consumption re-
sponse and create co-movement of investment and consumption in response to this shock. However, as in
the transmission of risk premium shocks, their impact on aggregate figures is negligible.

38For this sample, the downward trending interest rate drives the persistent upwards deviation of con-
sumption from its trend.
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Figure 10: IRFs to a wage markup shock for RANK and TANK estimated for 1983-2008. For TANK, the
share of hand-to-mouth agents λ is increased to 0.3 (vs. 0.176 in the posterior mean) to illustrate the effect
of MPC heterogeneity. Note: Medians over 250 simulations drawn from the posterior. 90% credible set for
TANK. Shock size is the posterior mean standard deviation for each model

nents. In contrast, in the mid-90s, negative wage markup shocks depress wages and create
a negative comovement with aggregat demand.

As shown in Figure 10, the transmission of wage markup and MEI shocks is altered by
the addition of hand-to-mouth consumers. While the response of wages and inflation is prac-
tically the same in RANK and TANK, the reaction of consumption differs accross models.39

In RANK, consumption declines, whereas in TANK a boost to labor income directly feeds
into increased spending by hand-to-mouth agents. This raises aggregate demand as well as
labor hours, while the investment response has the opposite sign, though the effect on the
latter is minuscule. Overall, TANK creates unlikely joint dynamics of the components of
real activity in response to a wage markup shock. As this is not easy to reconcile with the
data, it creates an inconvenient finding for TANK for the pre-crisis sample.40 Hence, the
look at the pre-crisis sample underlines that the difficulty of hand-to-mouth consumers to
improve upon RANK are not limited to the crisis sample.

To check whether the irrelevance of hand-to-mouth consumers for macroeconomic dy-
namics in our analysis is driven by our choice of the prior for λ, we conduct additional
estimations, in which we assign a uniform prior to this parameter. Table A.10 in Appendix
A shows the result of our robustness check. While in our benchmark estimates we obtain
posterior means of roughly 22% for TANK and FTANK, the estimation with wide priors

39As wage markup shocks are most important for wages and inflation in the historical shock decomposition,
the differences in the decomposition between RANK and TANK are negligible.

40In fact, the measures for the estimated MDD displayed in Table A.6 show a better empirical fit for
RANK than for TANK in the pre-crisis sample.
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Estimated marginal data densities

1998 – 2019 1983 – 2008
Mod.HM Laplace Mod.HM Laplace

RANK -388.522 -393.117 -444.460 -448.292
TANK -393.376 -395.718 -451.007 -450.096
FRANK -402.072 -405.040 -448.026 -450.343
FTANK -404.826 -408.701 -447.142 -450.919
FRANK-R -390.133 -394.931 -446.363 -448.189
FTANK-R -391.684 -398.029 -449.958 -448.847

FRANK-S -362.267 -360.621 -393.203 -400.407
FTANK-S -362.103 -366.018 -398.474 -400.559

Table 4: Comparison of the MDD (marginal data density)

yield far lower estimates, namely between five and nine percent for all considered samples.
We therefore conclude that the low relevance of hand-to-mouth consumers in our bench-
mark analysis is not the result of our informed prior. Rather it is due to the presence of
other frictions in our model that make it difficult to identify their effects on business cycle
dynamics.

5.4 The empirical fit of RANK, TANK & Financial friction models

Lastly, we assess how household heterogeneity à la TANK and financial frictions affect
the models’ empirical fit in the crisis. In Table 4, the first figure for each model marks the
approximation of the estimated marginal data density (MDD) via the Modified Harmonic
Mean, developed by Geweke (1999) whereas the second uses the Laplace Approximation.41

Centrally, the estimated MDDs confirm that neither financial frictions nor hand-to-
mouth consumers improve upon RANK in the crisis sample, as long as the same set of
observables is considered. This is in line with our analysis above. The empirical fit of the
model in the crisis sample is closely related to the ability of the most prominent shocks
in the sample to efficiently generate the observed dynamics. The more additional shocks
are needed to explain the variations of the observables, the worse is the empirical fit. As
discussed above, of the shocks under consideration, the risk premium shock is the one that
goes a longest way in driving joint dynamics over the crisis sample.

The empirical fit of TANK is only slightly worse than that of RANK for both measures
of the estimated MDD. Its failure to improve upon RANK is largely tied to its irrelevance
for the transmission of risk premium shocks. The MDD measures of FRANK, FTANK,
FRANK-R and FTANK-R show that financial frictions deteriorate the empirical fit of the
model. We find that this is due to the fact that the presence of financial frictions dampens
the drop differential of consumption and investment in response to a risk premium shock
(c.f. Section 5.2.1). This impedes the ability of risk premium shocks to generate the stark

41As the posterior distributions for the FRANK models are in parts bimodal, the Laplace estimator of
the MDD is likely to be biased as it relies on the assumption of a unimodal posterior. Similarly, as noted in
the original paper, the high dimensional parameter space of the models considered here potentially results
in approximation errors when using the approximation via the Modified Harmonic Mean. Note that for
estimations based on nonlinear filters, the estimate of the likelihood can also be subject to approximation
errors due to sampling errors.
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collapse of investment in the Great Recession without triggering an excessive decline in
consumption. As a consequence, financial friction models more heavily rely on additional
shocks. MEI shocks or risk shocks need to account for the decline in investment, and price
markup feature more prominently in the generation of inflation dynamics.

Notably, FRANK-R and FTANK-R, the models in which MEI shocks are replaced by risk
shocks fare better in terms of empirical fit than their counterparts FRANK and FTANK.
The reason is that compared to the effects of MEI shocks, the inflationary pressure induced
by risk shocks is more pronounced. The support of risk shocks dampens the fall of marginal
cost in the Great Recession and allows for a higher estimate of the slope coefficient of the
Phillips curve without inducing strong disinflation. Consequently, the steeper Phillips curve
allows a larger fraction of inflation dynamics to be explained endogenously. The reduced
need for the additional price markup shocks improves the empirical fit of FRANK-R which
is only slightly worse than that of RANK. Unfortunately, as discussed in Section 5.2.2, this
appealing feature disappears once the set of observables is enlarged by the credit spread and
MEI shocks crowd out risk shocks. Additionally, while improving upon a joint account for
investment and inflation, they fail to conciliate the dynamics of consumption and investment.

The fit of FRANK-S and FTANK-S is not directly comparable to the other models.
Whereas matching the path of the credit spread as an additional observable constitutes a
challenge in the estimation, the joint use of MEI shocks and risk shocks creates an additional
degree of freedom to match the data. These shocks have very similar effects on the model
dynamics. Using both in the same analysis, allows for matching the data with smaller
disturbances of two types instead of larger disturbances of one type, which would yield a
lower likelihood.

The results presented in this section demonstrate that the employed extensions might
not add significant value to the standard medium-scale RANK model for fitting the macroe-
conomic dynamics in the US around the Great Recession. This presents a potentially in-
convenient finding to the disadvantage of current TANK or financial friction models. Our
results highlight the challenge to find a proper modeling of these features, that enables
them to improve upon the standard model. At the same time, and somewhat expectable,
the RANK model itself delivers a poor story for the course of the macroeconomic dynamics
since the financial crisis.

6 Issues with a post-crisis analysis based on pre-crisis estimates

Fully accounting for the ZLB in the estimation of a DSGE model is non-trivial (c.f.
Subsections 3.1 and 3.2). It therefore has become common practice to analyze the dynamics
of the US economy during the crisis based on models, that are estimated on pre-ZLB data
only (see, e.g., Chen et al., 2012; Christiano et al., 2014, 2015; Del Negro et al., 2015b; Carl-
strom et al., 2017). This approach has generated prominent that shape our understanding
of the Great Recession, the role of financial frictions or the effects of unconventional mone-
tary policy. In this subsection we illustrate that this practice can yield strongly misleading
implications. One particular implication is, that the importance of disturbances to the in-
vestment decision is highly overtaxed. Shocks to investment cost have received heightened
attention in a search for an explanation of the events of the Great Recession – Christiano
et al. (2015) label it the financial wedge. In their analysis, variations in this wedge explain
the bulk of variations in real activity in the Great Recession and its aftermath. In contrast
to their finding, we argue that the importance of risk premium shocks, or in analogous
terms, the consumption wedge, is underestimated.
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Figure 11: RANK Model estimated to 1983–2008 used for the decomposition of the sample from 1998 –
2019. Note: Means over 250 simulations drawn from the posterior. The contribution of each shock is
normalized as in Appendix E.

We illustrate this in Figure 11, which shows the historical shock decomposition for the
crisis sample using parameter estimates derived from the estimation of the RANK model on
the pre-crisis sample. Relying only on pre-crisis data drastically changes the interpretation
of the crisis. Importantly, as a comparison with Figure 1 shows, in this exercise the role of
risk premium shocks for business cycle dynamics is dramatically reduced. The decline in
consumption is now attributed to a combination of risk premium shocks and MEI shocks.
Investment dynamics are almost entirely driven by MEI shocks, whereas the effect of risk
premium shocks is subdued. Compared to the results from the previous section, the role of
risk premiums for inflation dynamics is strongly reduced as well. In contrast, the inflationary
effect of negative MEI shocks now becomes more relevant. The long ZLB period as well is
explained to a mixture of recessionary risk premium shocks and MEI shocks.

The sharp difference between this interpretation of the crisis and the interpretation
based on an estimation on crisis data can be attributed to the differences in the estimated
parameter values displayed above in Table A.5. In particular, the estimates of σc play
an important role. In the crisis estimate, its posterior mean is at 0.930. In the pre-crisis
estimate it is at 1.469. Figure 12 shows how this alters the transmission of risk premium
shocks. Already in the base case of RANK, a drawback of the risk premium shock is that it
cannot match the drop differential of consumption and investment that was observed in the
Great Recession. A risk premium shock that would have triggered a collapse in investment
as observed in 2009, would have caused an excessive fall in consumption. For a coefficient
of relative risk aversion of σc = 1.469, as in this exercise, this drawback is exacerbated.
For values of σc larger than one, the decline in labor hours exerts an additional downwards
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Figure 12: IRFs to a risk premium shock in RANK estimated for 1998-2019. In orange with σc = 1.469, a
values taken from the estimate of RANK from 1983 to 2008.
Note: Medians over 250 simulations drawn from the posterior. 90% credible set for RANK. Shock size is
the posterior mean standard deviation.

pull on consumption through the non-separabilities in the utility function. In turn, the
lower consumption translates into an outward shift of the labor supply curve, and a further
drop in wages. Investment falls by less, since the marginal product of capital increases with
the additional employment used in production. Therefore, the drop differential between
investment and consumption becomes even smaller and makes it less likely that risk premium
shocks can account for the Great Recession.

In contrast, Figure 13 shows that one cause of the failure of MEI shocks to be recon-
ciled with the dynamics of the Great Recession is the low estimate of σc derived from the
estimation on crisis data. Here, a negative MEI shock increases consumption: by lowering
aggregate demand, MEI shocks weigh on the policy interest rate, which in turn stimulates
consumption on impact. This negative co-movement of consumption and investment is at
odds with the observed dynamics in the Great Recession. In contrast, when the higher value
of σc derived from the estimate on pre-crisis data is used, the non-separabilities between
labor and consumption generate a decline in consumption. In that case, the more prominent
role for MEI shocks allows a stronger support for inflation which, after an initial decline
in response to the shock, rebounds and puts upwards pressure on price dynamics. Hence,
given the pre-crisis estimate for the coefficient of relative risk aversion, MEI shocks can ad-
dress the missing deflation puzzle. However, the pre-crisis estimate of σc is very close to the
prior mean and it is hard to reject that this estimate is a matter of poor identification. On
the contrary, the crisis-sample estimate of this parameter is almost two standard deviations
distant from the prior mean, which suggests that the value is driven by the data. Hence we
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Figure 13: IRFs to a MEI shock in RANK estimated for 1998-2019. In orange with σc = 1.469, a values
taken from the estimate of RANK from 1983 to 2008. Note: Medians over 250 simulations drawn from the
posterior. 90% credible set for RANK. Shock size is the posterior mean standard deviation.

find that through the lens of pre-crisis estimates, MEI shocks – and other financial wedge
type of shocks which share similar properties – appear more attractive than they are when
bringing the model to crisis data.

This account of the Great Recession offered by our exercise based on the pre-crisis sample
differs sharply from the interpretation deemed most likely by the crisis data. As we see,
elevated risk premiums to the households borrowing rate play a dominant role for business
cycles. This can be loosely associated to increases in mortgage lending rates and calls for
a more refined modeling of household finances, as well as additional modeling features that
link a contraction in consumption to a strong fall in investment.42 Whatever modeling
choices prove to be the best fit to capture the events of the recent decades, the exercise in
this section highlights the importance of making use of the data of the last decade, when
analyzing business cycle dynamics during this time.

7 Conclusion

In this paper we estimate a selection of models on a sample that centers around the Great
Recession and includes the period of the binding ZLB thereafter. For the Bayesian inference
we take this occasionally binding constraint serious. Our approach allows us to analyze US
business cycles during that period and decompose the dynamics into the contribution of
its causal drivers. This paper is the first to estimate models on a US data sample that

42Additional challenges highlighted by Gomme et al. (2011) is to generate a negative co-movement of the
investment volume and Tobin’s q, as well as to break the equivalence of the return on assets and the return
on equity.
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ends in 2019, including the exit from the ZLB, and a rigorous model comparison. With our
comprehensive assessment of parameter estimates over various time horizons, we provide for
reference estimation for a set of medium-scale models that can be used to circumvent the
technical complications associated with the ZLB. Additionally, we provide a discussion of
how parameter estimates differ for crisis and pre-crisis samples.

Importantly, we find that although the empirical performance of the RANK model calls
for improvements, neither a TANK extension nor models that include financial frictions
as in Bernanke et al. (1999) meet the challenge of assigning a common causal driver to
the main events in the Great Recession. Namely, these models fall short of providing the
source for the collapse in investment, the decline in consumption and the only modest
dip in inflation observed in the recession. Particularly in models with financial frictions,
consumption and investment dynamics are dominated by independent drivers and a joint
propagation mechanism is absent. The absence of a common explanation for the dynamics
in the Great Recession presents a severe drawback for the considered models as a storytelling
device. This is also reflected in the fact that hand-to-mouth agents and financial frictions
somewhat worsen the empirical fit of the standard model.

Whereas recessionary financial shocks can in principle be inflationary, their implied con-
sumption response is at odds with the data. Hence, they are assigned a low weight in the
estimation of the crisis sample. This prevents them from contributing to an explanation of
the missing disinflation puzzle. Post-crisis dynamics are dominated by elevated risk premi-
ums on household borrowing rates, in line with the importance of increased mortgage rates
in the financial crisis. In contrast, pre-crisis business cycles are to a large degree driven
by shocks to the marginal efficiency of investment. Using pre-crisis estimates to analyze
the post-crisis period yields the misleading conclusion that shocks to the cost of investment
were a main driver for the Great Recession and the US economy’s post-crisis trajectory.
This result is a cautionary tale that should discourage from empirically investigating on the
Great Recession with models tuned to match the pre-crisis experience.

Going forward, it is a fruitful endeavor to use more refined models that zoom in on the
drivers of elevated risk premiums or to consider a more detailed modeling of labor markets.
To keep the scope of the paper manageable, we abstain from a discussion of the role of the
expanded set of monetary policies for post-crisis business cycles. Instead, a detailed analysis
of the effects of quantitative easing policies for macroeconomic dynamics in the US in the
context of a large-scale model is provided by Boehl et al. (2020).
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Appendix A Additional estimation results

Sample from 1998 to 2019

Prior Posterior
FTANK

dist. mean sd/df mean sd mode

σc normal 1.500 0.375 0.907 0.088 0.939
σl normal 2.000 0.750 1.636 0.372 1.616
βtpr gamma 0.250 0.100 0.131 0.045 0.157
h beta 0.700 0.100 0.779 0.039 0.793
S′′ normal 4.000 1.500 5.078 0.957 4.326
ιp beta 0.500 0.150 0.211 0.078 0.301
ιw beta 0.500 0.150 0.321 0.113 0.305
α normal 0.300 0.050 0.174 0.011 0.173
ζp beta 0.500 0.100 0.922 0.014 0.924
ζw beta 0.500 0.100 0.751 0.046 0.776
Φp normal 1.250 0.125 1.320 0.070 1.347
ψ beta 0.500 0.150 0.758 0.079 0.845
φπ normal 1.500 0.250 1.108 0.132 0.991
φy normal 0.125 0.050 0.235 0.026 0.208
φdy normal 0.125 0.050 0.161 0.042 0.241
ρ beta 0.750 0.100 0.753 0.031 0.755
ζspb beta 0.050 0.005 0.050 0.004 0.052
λ beta 0.300 0.100 0.223 0.073 0.193
ρr beta 0.500 0.200 0.491 0.071 0.425
ρg beta 0.500 0.200 0.938 0.018 0.945
ρz beta 0.500 0.200 0.970 0.021 0.972
ρu beta 0.500 0.200 0.886 0.025 0.891
ρp beta 0.500 0.200 0.412 0.146 0.567
ρw beta 0.500 0.200 0.515 0.086 0.450
ρi beta 0.500 0.200 0.914 0.025 0.915
µp beta 0.500 0.200 0.357 0.090 0.301
µw beta 0.500 0.200 0.326 0.087 0.264
ρgz normal 0.500 0.250 0.483 0.095 0.487
σg IG 0.100 2.000 0.252 0.025 0.252
σu IG 0.100 2.000 0.465 0.110 0.442
σz IG 0.100 2.000 0.389 0.042 0.408
σr IG 0.100 2.000 0.171 0.034 0.185
σp IG 0.100 2.000 0.414 0.140 0.228
σw IG 0.100 2.000 1.086 0.203 1.225
σi IG 0.100 2.000 0.524 0.060 0.530
γ normal 0.440 0.050 0.392 0.034 0.390

l normal 0.000 2.000 1.364 0.601 1.285
π gamma 0.625 0.100 0.592 0.050 0.613

spread normal 0.500 0.100 0.335 0.062 0.254

Table A.5: Estimation results for FTANK for the crisis sample (1998–2019).



Sample from 1983 to 2008

Prior Posterior
FTANK

dist. mean sd/df mean sd mode

σc normal 1.500 0.375 1.260 0.122 1.255
σl normal 2.000 0.750 2.499 0.510 2.771
βtpr gamma 0.250 0.100 0.147 0.047 0.146
h beta 0.700 0.100 0.659 0.052 0.696
S′′ normal 4.000 1.500 5.989 0.987 5.926
ιp beta 0.500 0.150 0.299 0.103 0.224
ιw beta 0.500 0.150 0.399 0.124 0.488
α normal 0.300 0.050 0.222 0.010 0.224
ζp beta 0.500 0.100 0.846 0.027 0.815
ζw beta 0.500 0.100 0.843 0.038 0.867
Φp normal 1.250 0.125 1.514 0.067 1.523
ψ beta 0.500 0.150 0.545 0.063 0.519
φπ normal 1.500 0.250 1.318 0.213 1.174
φy normal 0.125 0.050 0.213 0.034 0.196
φdy normal 0.125 0.050 0.192 0.039 0.200
ρ beta 0.750 0.100 0.732 0.038 0.717
ζspb beta 0.050 0.005 0.050 0.004 0.050
λ beta 0.300 0.100 0.218 0.059 0.161
ρr beta 0.500 0.200 0.702 0.068 0.742
ρg beta 0.500 0.200 0.941 0.029 0.967
ρz beta 0.500 0.200 0.936 0.019 0.944
ρu beta 0.500 0.200 0.764 0.074 0.776
ρp beta 0.500 0.200 0.749 0.085 0.827
ρw beta 0.500 0.200 0.607 0.106 0.438
ρi beta 0.500 0.200 0.875 0.029 0.885
µp beta 0.500 0.200 0.528 0.151 0.547
µw beta 0.500 0.200 0.323 0.131 0.145
ρgz normal 0.500 0.250 0.405 0.081 0.400
σg IG 0.100 2.000 0.238 0.018 0.224
σu IG 0.100 2.000 0.697 0.252 0.654
σz IG 0.100 2.000 0.314 0.029 0.325
σr IG 0.100 2.000 0.147 0.019 0.134
σp IG 0.100 2.000 0.130 0.048 0.087
σw IG 0.100 2.000 0.512 0.116 0.684
σi IG 0.100 2.000 0.667 0.073 0.648
γ normal 0.440 0.050 0.419 0.027 0.415

l normal 0.000 2.000 1.447 0.578 1.221
π gamma 0.625 0.100 0.600 0.066 0.598

spread normal 0.500 0.100 0.473 0.064 0.490

Table A.6: Estimation results for FTANK for the sample before the crisis (1983–2008).



Prior Posterior
FRANK-R FTANK-R FRANK-S FTANK-S

dist. mean sd/df mean sd mode mean sd mode mean sd mode mean sd mode

σc normal 1.500 0.375 1.365 0.116 1.397 1.232 0.107 1.203 1.156 0.117 1.135 0.999 0.103 1.002
σl normal 2.000 0.750 1.478 0.410 1.442 1.604 0.460 1.671 1.421 0.450 1.638 1.228 0.351 1.675
βtpr gamma 0.250 0.100 0.129 0.042 0.119 0.127 0.043 0.086 0.102 0.033 0.092 0.109 0.036 0.131
h beta 0.700 0.100 0.831 0.029 0.827 0.843 0.024 0.872 0.545 0.051 0.535 0.554 0.057 0.583
S′′ normal 4.000 1.500 5.773 0.978 5.367 5.724 0.897 5.279 2.964 0.748 2.155 2.864 0.754 2.489
ιp beta 0.500 0.150 0.228 0.076 0.285 0.216 0.068 0.203 0.280 0.091 0.269 0.248 0.078 0.192
ιw beta 0.500 0.150 0.422 0.125 0.282 0.421 0.125 0.436 0.379 0.114 0.263 0.379 0.118 0.456
α normal 0.300 0.050 0.199 0.013 0.210 0.197 0.013 0.198 0.178 0.012 0.176 0.179 0.011 0.190
ζp beta 0.500 0.100 0.793 0.030 0.753 0.784 0.032 0.761 0.935 0.028 0.936 0.932 0.021 0.939
ζw beta 0.500 0.100 0.694 0.045 0.694 0.705 0.041 0.716 0.760 0.066 0.818 0.767 0.065 0.818
Φp normal 1.250 0.125 1.383 0.095 1.461 1.375 0.092 1.315 1.316 0.060 1.355 1.317 0.061 1.326
ψ beta 0.500 0.150 0.808 0.064 0.818 0.810 0.064 0.850 0.809 0.062 0.843 0.825 0.060 0.824
φπ normal 1.500 0.250 1.382 0.197 1.190 1.391 0.196 1.439 0.979 0.181 0.860 0.982 0.120 0.967
φy normal 0.125 0.050 0.195 0.026 0.196 0.194 0.026 0.214 0.205 0.024 0.203 0.223 0.032 0.197
φdy normal 0.125 0.050 0.174 0.039 0.174 0.177 0.038 0.164 0.179 0.040 0.205 0.173 0.039 0.178
ρ beta 0.750 0.100 0.790 0.036 0.772 0.791 0.035 0.808 0.725 0.033 0.701 0.731 0.033 0.735
ρr beta 0.500 0.200 0.835 0.056 0.849 0.828 0.062 0.858 0.469 0.060 0.476 0.451 0.057 0.465
ρg beta 0.500 0.200 0.888 0.033 0.874 0.890 0.031 0.912 0.966 0.013 0.970 0.966 0.017 0.971
ρz beta 0.500 0.200 0.981 0.013 0.995 0.982 0.011 0.970 0.919 0.024 0.899 0.921 0.023 0.951
ρu beta 0.500 0.200 0.739 0.053 0.756 0.736 0.049 0.734 0.968 0.007 0.959 0.965 0.007 0.967
ρp beta 0.500 0.200 0.597 0.100 0.662 0.649 0.092 0.647 0.542 0.107 0.581 0.562 0.090 0.635
ρw beta 0.500 0.200 0.451 0.089 0.413 0.450 0.085 0.415 0.577 0.103 0.608 0.526 0.102 0.485
ρi beta 0.500 0.200 0.906 0.026 0.918 0.913 0.026 0.913
ρfin beta 0.500 0.200 0.960 0.012 0.963 0.956 0.015 0.965 0.960 0.024 0.948 0.957 0.024 0.968
µp beta 0.500 0.200 0.291 0.141 0.363 0.309 0.130 0.254 0.385 0.119 0.306 0.278 0.109 0.343
µw beta 0.500 0.200 0.249 0.080 0.215 0.247 0.077 0.203 0.366 0.114 0.416 0.313 0.100 0.279
ρgz normal 0.500 0.250 0.619 0.095 0.691 0.618 0.093 0.617 0.291 0.089 0.283 0.294 0.087 0.286
σg IG 0.100 2.000 0.220 0.028 0.195 0.220 0.028 0.214 0.275 0.022 0.260 0.272 0.022 0.257
σu IG 0.100 2.000 1.363 0.390 1.189 1.398 0.357 1.598 0.130 0.012 0.132 0.131 0.011 0.133
σz IG 0.100 2.000 0.410 0.044 0.373 0.413 0.043 0.391 0.415 0.043 0.484 0.411 0.043 0.415
σr IG 0.100 2.000 0.093 0.012 0.086 0.094 0.013 0.086 0.181 0.034 0.166 0.187 0.034 0.169
σp IG 0.100 2.000 0.198 0.072 0.181 0.166 0.047 0.152 0.292 0.083 0.213 0.228 0.053 0.193
σw IG 0.100 2.000 1.325 0.277 1.419 1.315 0.265 1.295 0.938 0.165 0.903 1.040 0.220 1.102
σi IG 0.100 2.000 0.551 0.068 0.571 0.546 0.068 0.561
σfin IG 0.100 2.000 0.444 0.078 0.427 0.461 0.090 0.415 0.096 0.011 0.099 0.098 0.012 0.087
γ normal 0.440 0.050 0.313 0.041 0.284 0.312 0.044 0.358 0.403 0.023 0.394 0.406 0.023 0.412

l normal 0.000 2.000 1.123 0.793 1.295 1.085 0.758 0.661 1.606 0.567 1.309 1.390 0.648 1.475
π gamma 0.625 0.100 0.561 0.065 0.558 0.563 0.069 0.579 0.692 0.058 0.634 0.678 0.051 0.665

spread normal 0.500 0.100 0.352 0.075 0.394 0.365 0.073 0.413 0.259 0.062 0.236 0.263 0.061 0.316
ζspb beta 0.050 0.005 0.051 0.004 0.053 0.051 0.004 0.052 0.051 0.004 0.051 0.051 0.004 0.050
λ beta 0.300 0.100 0.196 0.057 0.166 0.139 0.043 0.105

MDD -390.133 / -394.931 -391.684 / -398.029 -362.267 / -360.621 -362.103 / -366.018

Table A.7: Comparison of estimation results across models for the crisis sample: Models with financial shock instead of MEI shock (FRANK-R and FTANK-R)
and estimations including the GZ spread (FRANK-S and FTANK-S).



Prior Posterior
FRANK-R FTANK-R FRANK-S FTANK-S

dist. mean sd/df mean sd mode mean sd mode mean sd mode mean sd mode

σc normal 1.500 0.375 1.572 0.175 1.652 1.485 0.164 1.353 1.537 0.147 1.504 1.448 0.139 1.459
σl normal 2.000 0.750 1.773 0.560 1.819 1.456 0.589 1.751 2.628 0.488 2.669 2.566 0.536 1.992
βtpr gamma 0.250 0.100 0.158 0.052 0.131 0.166 0.055 0.121 0.133 0.044 0.126 0.133 0.043 0.135
h beta 0.700 0.100 0.684 0.044 0.701 0.699 0.045 0.703 0.451 0.045 0.484 0.418 0.059 0.440
S′′ normal 4.000 1.500 4.215 0.969 4.164 4.379 0.930 4.645 2.685 0.641 2.870 2.558 0.662 2.279
ιp beta 0.500 0.150 0.331 0.118 0.417 0.342 0.125 0.259 0.322 0.096 0.394 0.330 0.101 0.299
ιw beta 0.500 0.150 0.438 0.125 0.459 0.439 0.123 0.537 0.396 0.120 0.303 0.418 0.126 0.473
α normal 0.300 0.050 0.241 0.013 0.243 0.239 0.013 0.225 0.227 0.011 0.225 0.223 0.010 0.231
ζp beta 0.500 0.100 0.840 0.034 0.818 0.842 0.050 0.843 0.886 0.023 0.887 0.878 0.024 0.876
ζw beta 0.500 0.100 0.759 0.052 0.765 0.760 0.072 0.725 0.829 0.055 0.871 0.834 0.055 0.862
Φp normal 1.250 0.125 1.546 0.067 1.570 1.564 0.073 1.563 1.523 0.070 1.531 1.524 0.063 1.538
ψ beta 0.500 0.150 0.665 0.087 0.607 0.655 0.092 0.679 0.484 0.109 0.438 0.435 0.108 0.490
φπ normal 1.500 0.250 1.239 0.249 1.253 1.278 0.276 1.272 1.094 0.209 1.128 1.315 0.249 1.101
φy normal 0.125 0.050 0.218 0.036 0.201 0.216 0.047 0.232 0.170 0.035 0.137 0.163 0.033 0.173
φdy normal 0.125 0.050 0.200 0.039 0.201 0.195 0.042 0.166 0.226 0.039 0.209 0.234 0.040 0.242
ρ beta 0.750 0.100 0.713 0.041 0.707 0.717 0.042 0.712 0.691 0.046 0.687 0.717 0.040 0.673
ρr beta 0.500 0.200 0.807 0.068 0.831 0.810 0.079 0.833 0.633 0.086 0.627 0.585 0.082 0.642
ρg beta 0.500 0.200 0.969 0.017 0.975 0.969 0.030 0.980 0.980 0.010 0.978 0.979 0.010 0.973
ρz beta 0.500 0.200 0.968 0.014 0.979 0.963 0.018 0.961 0.932 0.023 0.921 0.928 0.019 0.936
ρu beta 0.500 0.200 0.770 0.063 0.726 0.755 0.066 0.812 0.975 0.007 0.979 0.974 0.007 0.973
ρp beta 0.500 0.200 0.708 0.129 0.830 0.700 0.143 0.843 0.770 0.096 0.838 0.760 0.100 0.807
ρw beta 0.500 0.200 0.701 0.103 0.578 0.715 0.101 0.780 0.701 0.104 0.757 0.681 0.113 0.539
ρi beta 0.500 0.200 0.776 0.048 0.734 0.782 0.049 0.759
ρfin beta 0.500 0.200 0.837 0.040 0.871 0.860 0.041 0.823 0.982 0.007 0.981 0.985 0.008 0.979
µp beta 0.500 0.200 0.556 0.158 0.629 0.589 0.138 0.633 0.698 0.108 0.777 0.676 0.105 0.739
µw beta 0.500 0.200 0.453 0.161 0.233 0.419 0.140 0.492 0.433 0.149 0.513 0.400 0.144 0.216
ρgz normal 0.500 0.250 0.373 0.081 0.422 0.391 0.085 0.362 0.361 0.083 0.401 0.383 0.082 0.397
σg IG 0.100 2.000 0.237 0.017 0.227 0.236 0.018 0.226 0.241 0.016 0.237 0.243 0.017 0.238
σu IG 0.100 2.000 0.742 0.233 0.913 0.824 0.266 0.612 0.100 0.009 0.092 0.103 0.009 0.104
σz IG 0.100 2.000 0.300 0.027 0.299 0.298 0.028 0.314 0.314 0.030 0.317 0.315 0.030 0.309
σr IG 0.100 2.000 0.126 0.015 0.126 0.126 0.021 0.107 0.180 0.034 0.176 0.193 0.034 0.197
σp IG 0.100 2.000 0.160 0.066 0.095 0.178 0.071 0.093 0.164 0.037 0.137 0.162 0.044 0.161
σw IG 0.100 2.000 0.455 0.103 0.511 0.416 0.078 0.360 0.423 0.081 0.368 0.427 0.114 0.522
σi IG 0.100 2.000 0.745 0.101 0.800 0.756 0.103 0.786
σfin IG 0.100 2.000 1.053 0.276 0.828 0.962 0.256 1.293 0.080 0.007 0.081 0.078 0.008 0.083
γ normal 0.440 0.050 0.468 0.027 0.438 0.485 0.024 0.508 0.489 0.019 0.484 0.490 0.019 0.500

l normal 0.000 2.000 2.599 0.762 2.319 2.464 0.828 2.279 2.779 0.513 2.328 2.693 0.568 2.713
π gamma 0.625 0.100 0.638 0.068 0.632 0.648 0.071 0.571 0.727 0.085 0.678 0.752 0.094 0.710

spread normal 0.500 0.100 0.475 0.073 0.543 0.468 0.072 0.500 0.330 0.059 0.338 0.341 0.062 0.372
ζspb beta 0.050 0.005 0.050 0.004 0.052 0.049 0.004 0.047 0.046 0.004 0.047 0.046 0.004 0.046
λ beta 0.300 0.100 0.236 0.067 0.307 0.205 0.065 0.195

MDD -446.363 / -448.189 -449.958 / -448.847 -393.203 / -400.407 -398.474 / -400.559

Table A.8: Comparison of estimation results across models for the pre-crisis sample from 1983-2008. Models with financial shock instead of MEI shock
(FRANK-R and FTANK-R) and estimations including the GZ spread (FRANK-S and FTANK-S).



Prior Posterior
RANK TANK FRANK FTANK

dist. mean sd/df mean sd mode mean sd mode mean sd mode mean sd mode

σc normal 1.500 0.375 1.339 0.138 1.328 1.237 0.128 1.244 1.116 0.128 0.995 0.983 0.095 0.951
σl normal 2.000 0.750 2.999 0.462 3.201 2.873 0.478 2.924 2.803 0.469 2.356 2.601 0.470 2.701
βtpr gamma 0.250 0.100 0.145 0.049 0.123 0.144 0.049 0.152 0.156 0.049 0.174 0.178 0.056 0.161
h beta 0.700 0.100 0.676 0.052 0.665 0.692 0.047 0.673 0.713 0.045 0.717 0.733 0.045 0.646
S′′ normal 4.000 1.500 5.047 0.960 4.965 5.181 1.014 4.503 5.923 0.962 5.644 6.104 1.089 5.145
ιp beta 0.500 0.150 0.230 0.079 0.246 0.235 0.080 0.144 0.221 0.071 0.168 0.237 0.078 0.257
ιw beta 0.500 0.150 0.380 0.110 0.377 0.391 0.116 0.497 0.357 0.117 0.288 0.369 0.121 0.267
α normal 0.300 0.050 0.185 0.010 0.179 0.186 0.009 0.188 0.202 0.010 0.194 0.202 0.009 0.209
ζp beta 0.500 0.100 0.914 0.015 0.922 0.915 0.013 0.925 0.917 0.015 0.906 0.918 0.015 0.922
ζw beta 0.500 0.100 0.827 0.030 0.839 0.827 0.031 0.838 0.873 0.030 0.900 0.877 0.028 0.889
Φp normal 1.250 0.125 1.335 0.057 1.358 1.349 0.059 1.300 1.308 0.058 1.305 1.328 0.056 1.357
ψ beta 0.500 0.150 0.739 0.073 0.734 0.746 0.075 0.756 0.623 0.064 0.642 0.638 0.061 0.641
φπ normal 1.500 0.250 0.911 0.189 0.850 0.946 0.157 0.849 1.114 0.187 1.080 1.095 0.165 0.997
φy normal 0.125 0.050 0.287 0.027 0.279 0.286 0.027 0.293 0.245 0.030 0.250 0.239 0.029 0.247
φdy normal 0.125 0.050 0.191 0.040 0.243 0.190 0.039 0.172 0.201 0.042 0.207 0.179 0.042 0.188
ρ beta 0.750 0.100 0.654 0.050 0.652 0.661 0.041 0.641 0.727 0.035 0.726 0.718 0.037 0.685
ρr beta 0.500 0.200 0.882 0.053 0.899 0.882 0.031 0.896 0.662 0.072 0.658 0.676 0.063 0.644
ρg beta 0.500 0.200 0.985 0.029 0.987 0.987 0.023 0.990 0.929 0.045 0.915 0.911 0.045 0.908
ρz beta 0.500 0.200 0.984 0.008 0.984 0.983 0.008 0.984 0.988 0.011 0.994 0.985 0.016 0.995
ρu beta 0.500 0.200 0.880 0.035 0.892 0.872 0.035 0.884 0.873 0.031 0.881 0.870 0.029 0.897
ρp beta 0.500 0.200 0.579 0.098 0.537 0.569 0.111 0.701 0.664 0.096 0.721 0.691 0.078 0.744
ρw beta 0.500 0.200 0.718 0.096 0.680 0.725 0.084 0.671 0.640 0.092 0.433 0.596 0.090 0.572
ρi beta 0.500 0.200 0.813 0.053 0.824 0.836 0.048 0.854 0.909 0.017 0.923 0.916 0.016 0.923
µp beta 0.500 0.200 0.523 0.084 0.480 0.508 0.088 0.640 0.450 0.161 0.420 0.452 0.155 0.498
µw beta 0.500 0.200 0.501 0.133 0.436 0.505 0.120 0.437 0.414 0.113 0.204 0.357 0.108 0.334
ρgz normal 0.500 0.250 0.316 0.081 0.362 0.321 0.082 0.283 0.391 0.117 0.431 0.429 0.112 0.473
σg IG 0.100 2.000 0.258 0.016 0.249 0.259 0.016 0.253 0.266 0.017 0.254 0.262 0.019 0.232
σu IG 0.100 2.000 0.461 0.161 0.374 0.488 0.139 0.420 0.418 0.127 0.373 0.438 0.119 0.267
σz IG 0.100 2.000 0.333 0.028 0.356 0.329 0.028 0.346 0.324 0.027 0.319 0.325 0.030 0.298
σr IG 0.100 2.000 0.104 0.014 0.097 0.104 0.009 0.098 0.140 0.022 0.136 0.136 0.017 0.146
σp IG 0.100 2.000 0.287 0.052 0.305 0.290 0.067 0.236 0.200 0.066 0.150 0.177 0.050 0.153
σw IG 0.100 2.000 0.564 0.099 0.595 0.553 0.085 0.637 0.653 0.110 0.991 0.698 0.119 0.707
σi IG 0.100 2.000 0.566 0.076 0.539 0.536 0.067 0.550 0.612 0.062 0.609 0.611 0.071 0.638
γ normal 0.440 0.050 0.417 0.037 0.441 0.424 0.031 0.431 0.337 0.041 0.296 0.329 0.034 0.301

l normal 0.000 2.000 2.433 0.532 2.308 2.509 0.580 2.327 0.656 0.805 0.321 0.295 0.837 0.677
π gamma 0.625 0.100 0.703 0.057 0.693 0.704 0.057 0.684 0.582 0.050 0.566 0.580 0.049 0.581

spread normal 0.500 0.100 0.451 0.059 0.444 0.447 0.061 0.487
ζspb beta 0.050 0.005 0.051 0.004 0.051 0.050 0.004 0.046
λ beta 0.300 0.100 0.142 0.041 0.107 0.200 0.063 0.204

MDD -629.690 / -634.650 -634.127 / -639.451 -640.957 / -638.910 -642.827 / -642.182

Table A.9: Comparison of estimation results across models for the full sample including the crisis (1983–2019). MDD (marginal data density) given as Modified
Harmonic Mean and Laplace Approximations.



Prior Posterior
1998–2020 1983–2008 1983–2020

dist. mean sd/df mean sd mode mean sd mode mean sd mode

σc normal 1.500 0.375 1.013 0.105 0.969 1.445 0.142 1.430 1.326 0.140 1.274
σl normal 2.000 0.750 1.718 0.412 2.119 2.243 0.545 2.369 2.923 0.442 2.639
βtpr gamma 0.250 0.100 0.142 0.051 0.106 0.145 0.046 0.149 0.146 0.047 0.083
h beta 0.700 0.100 0.825 0.027 0.828 0.698 0.047 0.737 0.665 0.046 0.695
S′′ normal 4.000 1.500 5.716 0.915 5.428 5.528 1.022 5.768 4.937 0.931 5.617
ιp beta 0.500 0.150 0.195 0.069 0.173 0.295 0.097 0.221 0.230 0.079 0.221
ιw beta 0.500 0.150 0.386 0.118 0.388 0.413 0.121 0.422 0.387 0.122 0.334
α normal 0.300 0.050 0.175 0.011 0.157 0.214 0.010 0.212 0.186 0.009 0.176
ζp beta 0.500 0.100 0.822 0.038 0.878 0.842 0.034 0.835 0.916 0.012 0.916
ζw beta 0.500 0.100 0.692 0.042 0.752 0.783 0.052 0.769 0.828 0.034 0.785
Φp normal 1.250 0.125 1.321 0.092 1.203 1.539 0.066 1.611 1.337 0.057 1.334
ψ beta 0.500 0.150 0.775 0.078 0.754 0.620 0.087 0.578 0.742 0.072 0.725
φπ normal 1.500 0.250 1.400 0.185 1.223 1.317 0.245 1.533 0.880 0.127 0.867
φy normal 0.125 0.050 0.216 0.029 0.206 0.216 0.044 0.190 0.288 0.026 0.266
φdy normal 0.125 0.050 0.172 0.041 0.184 0.206 0.039 0.234 0.191 0.037 0.149
ρ beta 0.750 0.100 0.819 0.035 0.808 0.711 0.044 0.743 0.644 0.038 0.643
ρr beta 0.500 0.200 0.750 0.080 0.760 0.814 0.061 0.789 0.894 0.022 0.884
ρg beta 0.500 0.200 0.904 0.029 0.934 0.971 0.015 0.975 0.990 0.005 0.992
ρz beta 0.500 0.200 0.989 0.011 0.983 0.952 0.017 0.950 0.984 0.007 0.982
ρu beta 0.500 0.200 0.844 0.030 0.871 0.715 0.090 0.684 0.887 0.023 0.859
ρp beta 0.500 0.200 0.536 0.130 0.587 0.766 0.077 0.794 0.576 0.094 0.642
ρw beta 0.500 0.200 0.457 0.088 0.310 0.691 0.098 0.709 0.718 0.095 0.822
ρi beta 0.500 0.200 0.757 0.101 0.680 0.779 0.058 0.744 0.825 0.047 0.819
µp beta 0.500 0.200 0.507 0.117 0.548 0.580 0.140 0.504 0.521 0.083 0.575
µw beta 0.500 0.200 0.258 0.078 0.155 0.405 0.135 0.408 0.499 0.132 0.650
ρgz normal 0.500 0.250 0.627 0.096 0.565 0.354 0.081 0.299 0.322 0.072 0.304
σg IG 0.100 2.000 0.220 0.027 0.197 0.238 0.017 0.242 0.257 0.015 0.253
σu IG 0.100 2.000 0.775 0.182 0.632 1.060 0.419 1.293 0.423 0.078 0.495
σz IG 0.100 2.000 0.398 0.043 0.393 0.307 0.028 0.283 0.329 0.027 0.346
σr IG 0.100 2.000 0.108 0.015 0.101 0.130 0.013 0.133 0.102 0.009 0.102
σp IG 0.100 2.000 0.316 0.086 0.284 0.132 0.046 0.095 0.288 0.051 0.258
σw IG 0.100 2.000 1.279 0.267 1.869 0.438 0.075 0.420 0.560 0.094 0.478
σi IG 0.100 2.000 0.562 0.153 0.713 0.634 0.107 0.647 0.552 0.067 0.520
γ normal 0.440 0.050 0.341 0.055 0.418 0.465 0.024 0.481 0.427 0.025 0.431

l normal 0.000 2.000 1.605 0.774 1.213 2.293 0.640 2.714 2.401 0.569 3.011
π gamma 0.625 0.100 0.629 0.058 0.678 0.701 0.066 0.714 0.701 0.053 0.721
λ uniform 0.000 0.700 0.081 0.062 0.010 0.090 0.066 0.103 0.046 0.036 0.037

MDD -394.627 / -400.194 -446.100 / -450.807 -634.260 / -640.259

Table A.10: Comparison of estimation results for TANK models with a flat prior on the share λ of H2M agents for the different data samples.



Appendix B Data

Our measurement equations contain eight variables:

• GDP: ln(GDP/GDPDEF/CNP16OV ma)*100

• CONS: ln((PCEC-PCEDG)/GDPDEF/CNP16OV ma)*100

• INV: ln((GPDI+PCEDG)/GDPDEF/CNP16OV ma)*100

• LAB: demeaned(ln((13*AWHNONAG*CE16OV)/CNP16OV ma)*100)

• INFL: ln(GDPDEF)

• WAGE: ln(COMPNFB/GDPDEF)*100

• FFR: FEDFUNDS/4

• GZ: (GZspread)/4

For GDP, CONS, INV, INFL and WAGE we use the log changes in our measurement
equations.

Data sources:

• GDP: GDP - Gross Domestic Product, Billions of Dollars, Quarterly, Seasonally Ad-
justed Annual Rate, FRED

• GDPDEF: Gross Domestic Product: Implicit Price Deflator, Index 2012=100, Quar-
terly, Seasonally Adjusted, FRED

• PCEC: Personal Consumption Expenditures, Billions of Dollars, Quarterly, Seasonally
Adjusted Annual Rate, FRED

• PCEC: Personal Consumption Expenditures: Durable Goods, Billions of Dollars,
Quarterly, Seasonally Adjusted Annual Rate, FRED

• GPDI: Gross Private Domestic Investment, Billions of Dollars, Quarterly, Seasonally
Adjusted Annual Rate, FRED

• AWHNONAG: Average Weekly Hours of Production and Nonsupervisory Employees:
Total private, Hours, Weekly, Seasonally Adjusted, FRED

• CE16OV: Civilian Employment Level, Thousands of Persons, Seasonally Adjusted,
FRED

• CNP16OV ma43: trailing MA(5) of the Civilian Noninstitutional Population, Thou-
sands of Persons, Quarterly, Not Seasonally Adjusted, FRED

• COMPNFB, Nonfarm Business Sector: Compensation Per Hour, Index 2012=100,
Quarterly, Seasonally Adjusted, FRED

43As in Boehl et al. (2020), we use a trailing MA(5) of the civilian non-institutional population index to
normalize GDP, its components and labor hours, instead of the index itself at it is often done. This helps
us to purge our observables of jumps in the index itself that reflect artifacts in its construction.
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• FEDFUNDS: Effective Federal Funds Rate, Percent, FRED

• GZspread: Credit spread constructed by Gilchrist and Zakraǰsek (2012), Percent,
Board of Governors of the Federal Reserve System

Appendix C Model Descriptions

We build on the canonical framework developed by and , and allow for two independent
extensions: hand-to-mouth consumers, that are unable to save and only consume their
current-period wage income, and financial frictions in the vein of . We dub the model
with only a representative agent the RANK model to distinguish it from our two-agent
new Keynesian (TANK) model. The TANK model therefore features Ricardian and hand-
to-mouth households. The model vintages including financial frictions will be referred to
as financial representative agent NK model – FRANK – and FTANK respectively for the
two-agent version of FRANK.

In all models, labor is differentiated by unions with monopoly power that face nominal
rigidities for their wage setting process. Intermediate good producers employ labor and
capital services and sell their goods to final goods firms. Final good firms are monopolisti-
cally competitive and face nominal rigidities as in . The model further allows for exogenous
government spending and features a monetary authority that sets the short-term nominal
interest rate according to a monetary policy rule. In TANK and FTANK, economy-wide
labor supply and consumption are aggregates of the respective contributions by Ricardian
and hand-to-mouth households. In FRANK and FTANK, we assume that frictionless finan-
cial intermediates collect funds from households. These funds are lent with a spread, which
reflects default risk, to entrepreneurs, who use it together with their own equity to purchase
physical capital. Physical capital in turn is rented out to intermediate good producers.

Appendix C.1 The linearized RANK model

This subsection briefly presents the linearized equilibrium conditions. A detailed deriva-
tion of the linearized equations is discussed e.g. in the appendix to Smets and Wouters
(2007). All variables in this section are expressed as a log-deviation from their respective
steady state values. The consumption Euler equation of Ricardian households is given by

cRt =
h/γ

(1 + h/γ)
cRt−1 +

1

1 + h/γ
Et[c

R
t+1] +

(σc − 1)(WhL/C)

σc(1 + h/γ)
(lRt − Et[l

R
t+1])

−
(1− h/γ)

(1 + h/γ)σc
(rt − Et[πt+1] + ut),

(C.1)

where cRt is consumption by Ricardian agents, and lRt is their supply of labor. Parameters
h, σc and σl are, respectively, the degree of external habit formation in consumption, the
coefficient of relative risk aversion, and the inverse of the Frisch elasticity. γ denotes the
steady-state growth rate of the economy. rt is the nominal interest rate, πt is the infla-
tion rate, and ut is an exogenous risk premium shock, which drives a wedge between the
lending/savings rate and the riskless real rate.

Equation (C.2) is the linearized relationship between investment and the relative price
of capital,

it =
1

1 + β
[it−1] +

β

1 + β
Et[it+1] +

1

(1 + β)γ2S′′
qt + vi,t. (C.2)
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Here, it denotes investment in physical capital and qt is the price of capital. It holds
that β = βγ(1−σc) where β is the households’ discount factor. Investment is subject to
adjustment costs, which are governed by S′′, the steady-state value of the second derivative
of the investment adjustment cost function, and an exogenous process, vi,t. While Smets and
Wouters (2007) interpret ei,t as an investment specific technology disturbance, Justiniano
et al. (2011) stress that this shock can as well be viewed as a reduced-form way of capturing
financial frictions, as it drives a wedge between aggregate savings and aggregate investment.
We henceforth refer to this disturbance as a shock on the marginal efficiency of investment
(MEI).

The accumulation equation of physical capital is given by

kt = (1− δ)/γkt−1 + (1− (1− δ)/γ)it + (1− (1− δ)/γ)(1 + β)γ2S′′vi,t, (C.3)

where k denotes physical capital, and parameter δ is the depreciation rate. The following
Equation (C.4) is the no-arbitrage condition between the rental rate of capital, rkt , and the
riskless real rate:

rt − Et[πt+1] + ut =
rk

rk + (1− δ)
Et[r

k
t+1] +

(1− δ)

rk + (1− δ)
Et[qt+1]− qt. (C.4)

As the use of physical capital in production is subject to utilization costs, which in turn can
be expressed as a function of the rental rate on capital, the relation between the effectively
used amount of capital kt and the physical capital stock is

kt =
1− ψ

ψ
rkt + kt−1, (C.5)

where ψ ∈ (0, 1) is the parameter governing the costs of capital utilization. Equation (C.6)
is the aggregate production function

yt = Φ(αkt + (1− α)lt + zt). (C.6)

Intermediate good firms employ labor and capital services. Let zt be the exogenous process
of total factor productivity. Parameter α is the elasticity of output with respect to capital
and Φ enters the production function due to the assumption of a fixed cost in production.
Real marginal costs for producing firms, mct, can be written as

mct = wt − zt + α(lt − kt). (C.7)

wt denotes the real wage, which are set by labor unions. Furthermore, cost minimization
for intermediate good producers results in condition (C.8):

kt = wt − rkt + lt. (C.8)

The aggregate resource constraint (C.9) contains an exogenous demand shifter, gt, which
comprises exogenous variations in government spending and net exports, as well as the
resource costs of capital utilization:

yt =
G

Y
gt +

C

Y
ct +

I

Y
it +

RkK

Y

1− ψ

ψ
rkt . (C.9)
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Final good producers are assumed to have monopoly power and face nominal rigidities as in
Calvo (1983) when setting their prices. This gives rise to a New Keynesian Phillips Curve
(NKPC) of the form

πt =
β

1 + ıpβ
Etπt+1 +

ıp

1 + ıpβ
πt−1 +

(1− ζpβ)(1− ζp)

(1 + βıp)ζp((Φ− 1)ǫp + 1)
mct + vp,t. (C.10)

Here, ζp is the probability that a firm cannot update its price in any given period. In addition
to Calvo pricing, we assume partial price indexation, governed by the parameter ıp. The
Phillips Curve is hence both, forward and backward looking. ǫp denotes the curvature of the
Kimball (1995) aggregator for final goods. Due to the Kimball aggregator, the sensitivity of
inflation to fluctuations in marginal cost is affected by the market power of firms, represented
by the steady state price markup, Φ − 1.44 Furthermore, the curvature of the Kimball
aggregator affects the adjustment of prices to marginal cost as the higher ǫp, the higher is
the degree of strategic complementarity in price setting, dampening the price adjustment
to shocks. The last term in the NKPC, vp,t, represents exogenous fluctuations in the price
markup.

While final good producers set prices on the good market, wages are set by labor unions.
Unions bundle labor services from households and offer them to firms with a markup over
the frictionless wage, wh

t , which reads

wh
t =

1

(1− h)
(ct − hct−1) + σllt. (C.11)

As with price setting, we assume that the nominal rigidities in the wage setting process are
of the Calvo type, and include partial wage indexation. The wage Phillips curve thus is

wt =
1

1 + βγ
(wt−1 + ıwπt−1) +

βγ

1 + βγ
Et[wt+1 + πt+1]−

1 + ıwβγ

1 + βγ
πt

+
(1− ζwβγ)(1− ζw)

(1 + βγ)ζw((λw − 1)ǫw + 1)
(wh

t − wt) + vw,t.

(C.12)

The term wh
t −wt is the inverse of the wage markup. Analogous to equation (C.10), the terms

λw and ǫw are the steady state wage markup and the curvature of the Kimball aggregator
for labor services, respectively. The term vw,t represents exogenous variations in the wage
markup.

We take into account the fact that the central bank is constrained in its interest rate
policy by a zero lower bound (ZLB) on the nominal interest rate. Therefore, in the linear
model, it is that

rt = max{r̄, rnt }, (C.13)

with r̄ being the lower bound value. Whenever the policy rate is away from the constraint,
it corresponds to the notational rate, rnt , which follows the feedback rule

rnt = ρrnt−1 + (1− ρ) (φππt + φy ỹt + φdy∆ỹt) + vr,t. (C.14)

44Note that in equilibrium, the steady state price markup is tied to the fixed cost parameter by a zero
profit condition.
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Here, ỹt is the output gap and ∆ỹt = ỹt − ỹt−1 its growth rate. Parameter ρ expresses an
interest rate smoothing motive by the central bank. φπ, φy and φdy are feedback coeffi-
cients. When the economy is away from the ZLB, the stochastic process vr,t represents a
regular interest rate shock. When the nominal interest rate is zero, however, vr,t may not
directly affect the level of the nominal interest rate. However, through the persistence of
the stochastic process that drives vr,t, it affects the expected path of the notational rate and
can therefore alter the expected duration of the lower bound spell. It can hence be viewed
as a forward guidance shock whenever the economy is at the ZLB.

Finally, the stochastic drivers in our model are the following seven processes:

ut =ρuut−1 + ǫut , (C.15)

zt =ρzzt−1 + ǫzt , (C.16)

gt =ρggt−1 + ǫgt + ρgzǫ
z
t , (C.17)

vr,t =ρrvr,t−1 + ǫrt , (C.18)

vi,t =ρivi,t−1 + ǫit, (C.19)

vp,t =ρpvp,t−1 + ǫpt − µpǫ
p
t−1, (C.20)

vw,t =ρwvw,t−1 + ǫwt − µwǫ
w
t−1, (C.21)

where ǫkt
iid
∼ N(0, σ2

k) for all k = {r, i, p, w}, and likewise for {ut, zt, gt}.

Appendix C.2 A TANK extension

Our first extension is the addition of hand-to-mouth households to the RANK model,
which thereby becomes a two-agent New Keynesian (TANK) model. We assume that, for
any given reason, a share λ of households does not have any savings technology at its disposal
and therefore consumes whatever it earns from its labor services provided.45 The linearized
budget constraint of hand-to-mouth consumers simply reads

cHt = wt + lHt , (C.22)

with cHt and lHt denoting hand-to-mouth agents’ consumption and labor supply. While
Ricardian and hand-to-mouth consumers differ in their ability to save, we assume that they
share the same preferences. Thus, the linearized labor supply equation, that would prevail
in frictionless labor markets, has the same structure for hand-to-mouth consumers as it has
for optimizing consumers. It is therefore given by

wh
t =

1

(1− h)
(cHt − hcHt−1) + σll

H
t . (C.23)

We assume that hand-to-mouth agents are represented by the same labor unions as Ricardian
agents. As such both types of agents earn the same wage. Aggregate consumption and labor
hours can be obtained in the linearized form as

ct = λcHt + (1− λ)cRt , (C.24)

45In contrast to HANK, the TANK model does not capture uncertainty effects or time-variations of the
share of constrained agents on consumption.
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lt = λlHt + (1− λ)lRt . (C.25)

Note that for λ set to zero, the TANK model nests the RANK model without hand-to-mouth
consumers as a special case.

Appendix C.3 Financial Frictions

The second extension that we consider is the inclusion of frictions in financial markets.
Here, we adopt the modeling choices by Del Negro et al. (2015b), who build on the work of
Bernanke et al. (1999), and Christiano et al. (2014).

In this model, entrepreneurs obtain loans from frictionless financial intermediates, which
in turn receive their funds from household at the riskless interest rate. In addition to the
loans, entrepreneurs use their own net worth to finance the purchase of physical capital that
they rent out to intermediate good producers. Entrepreneurs are subject to idiosyncratic
shocks to their success in managing capital. As a consequence, their revenue might fall
short of the amount needed to repay the loan, in which case they will default on their loan.
In anticipation of the risk of entrepreneurs’ default, financial intermediates pool their loans
and charge a spread on the riskless rate to cover the expected losses arising from defaulting
entrepreneurs. Therefore, in the full model, condition (C.4) in the RANK model is replaced
by the two conditions

Et[r̃
k
t+1 − rt] = ut + ζsp,b(qt + kt − nt) + σ̃ω,t, (C.26)

r̃kt − πt =
rk

rk + (1− δ)
rkt +

(1− δ)

rk + (1− δ)
qt+1 − qt−1. (C.27)

r̃kt is the nominal return on capital for entrepreneurs, nt denotes entrepreneurs’ aggregate
net worth, and σ̃ω,t allows for exogenous variations in the entrepreneurs’ riskiness. The first
condition defines the spread as a function of the entrepreneurs leverage and their riskiness,
which is determined by the dispersion of the idiosyncratic shocks to entrepreneurs. Note
that if the elasticity of the loan rate to the entrepreneurs’ leverage, ζsp,b, is set to zero,
we are back to the case without financial frictions. Condition (C.27) defines the return on
capital for entrepreneurs.

The evolution of aggregate entrepreneurial net worth is described by

nt = ζn,r̃k(r̃
k
t − πt)− ζn,r(rt−1 − πt)+ ζn,qk(qt−1 + kt−1)+ ζn,nnt−1 −

ζn,σω

ζsp,σω

σ̃ω,t−1. (C.28)

Equation (C.28) links the accumulated stock of entrepreneurial net worth to the real return
of renting out capital to firms, the riskless real rate, its capital holdings, its past net worth
and variations in riskiness. The coefficients ζn,r̃k , ζn,r, ζn,qk, ζn,σω

, and ζsp,σω
are derived

as in Del Negro et al. (2015b). They depend on the steady state calibration of the default
rate of entrepreneurs, the distribution of entrepreneurial risk, and their survival probability.

Lastly, the evolution of exogenous variations in entrepreneurial risk, the risk shock in
terms of Christiano et al. (2014), follows the process

σ̃ω,t = ρσσ̃ω,t−1 + ǫσ,t, (C.29)

with ǫσ,t
iid
∼ N(0, σ2

σ). In the estimation of the standard financial friction versions of the
model, FRANK and FTANK, we abstain from using the risk shock, and only focus on the
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role of the financial accelerator for the transmission of other shocks. The versions FRANK-R
and FTANK-R will allow for the risk shock instead of the MEI shock. In the estimation of
the models on eight observables including a credit spread (FRANK-S and FTANK-S) will
allow for both, the risk shock and the shock on the marginal effectively of investment.

Appendix D Generalized Forecasting Error Variance Decompositions

Tables D.11 to D.16 report the generalized forecasting error variance decomposition,
constructed as in Lanne and Nyberg (2016) and sampled from the posterior. It is quite
clear that risk premium shocks play a dominant role for the most variables over short and
long time horizons. In the short run, fluctuations in output are primarily driven by risk
premium shocks. To a lesser degree, MEI shocks play a role as well for short run fluctuations
in output.

At a time horizon of four quarters, risk premium shocks and MEI shocks are the most
important shocks for output. Whereas demand factors dominate the explanation of output
in the last decades, supply side factors, such as fluctuations in TFP and price markups gain
some importance as well at longer times horizon. Not surprisingly, the generalized forecast
error variance decomposition reflects the divide between the driver of consumption and the
driver of investment, that is exhibited in the historical shock decomposition. Consumption
is predominantly driven by risk premium shocks, which directly hit the Euler equation of
households, whereas investment is mainly driven by MEI shocks. Short-run fluctuations in
prices and wages are explained by price markup shocks and wage markup shocks, respec-
tively.

Over the medium and long run, these shocks lose in importance. Again at a time
horizon of four quarters, risk premium shocks account of most of the movements in inflation,
whereas MEI shocks dominate inflation in the long-run through their effect on the slow-
moving capital stock. Short-term movements of the nominal interest rate are due mostly
to monetary policy shocks, which represent deviations from the policy rule and translate
into forward guidance shocks at the ZLB. With the extension of the time horizon it shows
that the policy rate mainly reacts to movements in fundamentals, which are triggered by
risk premium shocks. Thus overall, risk premium shocks are the dominant shocks for this
episode.

RANK: One quarter

y c i π w r l

ǫg 0.117 0.006 0.000 0.000 0.000 0.001 0.138
ǫz 0.225 0.041 0.006 0.018 0.005 0.016 0.137
ǫu 0.410 0.775 0.290 0.044 0.035 0.137 0.448
ǫr 0.111 0.171 0.103 0.033 0.013 0.645 0.122
ǫi 0.130 0.002 0.598 0.001 0.001 0.002 0.152
ǫp 0.002 0.004 0.002 0.877 0.039 0.191 0.002
ǫw 0.005 0.001 0.000 0.027 0.906 0.009 0.000

Table D.11
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RANK: Four quarters

y c i π w r l

ǫg 0.012 0.009 0.001 0.001 0.000 0.002 0.016
ǫz 0.145 0.099 0.021 0.074 0.085 0.016 0.009
ǫu 0.526 0.657 0.359 0.310 0.362 0.457 0.626
ǫr 0.211 0.223 0.178 0.297 0.192 0.436 0.255
ǫi 0.098 0.006 0.434 0.012 0.019 0.007 0.088
ǫp 0.006 0.005 0.006 0.237 0.096 0.074 0.006
ǫw 0.001 0.001 0.000 0.069 0.244 0.008 0.001

Table D.12

RANK: 16 quarters

y c i π w r l

ǫg 0.001 0.017 0.005 0.003 0.000 0.002 0.027
ǫz 0.804 0.787 0.421 0.301 0.588 0.024 0.048
ǫu 0.049 0.063 0.071 0.112 0.144 0.944 0.122
ǫr 0.095 0.074 0.162 0.383 0.195 0.008 0.420
ǫi 0.049 0.057 0.336 0.163 0.053 0.018 0.361
ǫp 0.001 0.001 0.002 0.014 0.014 0.001 0.004
ǫw 0.001 0.001 0.003 0.025 0.006 0.003 0.019

Table D.13

FRANK: One quarter

y c i π w r l

ǫg 0.111 0.007 0.000 0.000 0.000 0.001 0.117
ǫz 0.253 0.124 0.004 0.002 0.003 0.009 0.216
ǫu 0.295 0.758 0.082 0.026 0.016 0.106 0.312
ǫr 0.029 0.062 0.013 0.003 0.001 0.859 0.032
ǫi 0.306 0.035 0.900 0.023 0.017 0.005 0.319
ǫp 0.003 0.014 0.001 0.943 0.010 0.018 0.003
ǫw 0.003 0.000 0.000 0.004 0.952 0.001 0.000

Table D.14
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FRANK: Four quarters

y c i π w r l

ǫg 0.011 0.013 0.000 0.000 0.000 0.003 0.016
ǫz 0.168 0.219 0.007 0.006 0.071 0.013 0.007
ǫu 0.279 0.655 0.050 0.093 0.245 0.500 0.386
ǫr 0.025 0.046 0.008 0.006 0.016 0.287 0.038
ǫi 0.513 0.063 0.933 0.089 0.383 0.075 0.550
ǫp 0.003 0.003 0.001 0.802 0.100 0.123 0.003
ǫw 0.000 0.001 0.000 0.005 0.186 0.001 0.000

Table D.15

FRANK: 16 quarters

y c i π w r l

ǫg 0.002 0.011 0.000 0.003 0.000 0.002 0.041
ǫz 0.374 0.331 0.065 0.163 0.193 0.013 0.024
ǫu 0.031 0.080 0.017 0.506 0.122 0.798 0.212
ǫr 0.000 0.000 0.000 0.003 0.001 0.000 0.004
ǫi 0.592 0.578 0.916 0.295 0.671 0.185 0.716
ǫp 0.000 0.000 0.000 0.028 0.007 0.002 0.001
ǫw 0.000 0.000 0.001 0.002 0.005 0.000 0.001

Table D.16

Appendix E Normalization of historic shock decompositions for models with

OBCs

We are interested in quantifying the contribution of a each type of shock to the time
series of the model variables. Such quantification is called the historic shock decomposition
(HSD). Once one or several occasionally binding constraints (OBCs) are included in the
model, the model is nonlinear and the HSD is generally not unique. To illustrate, imagine
a deflationary MEI shock εit and a risk premium shock ut, which together cause the ZLB to
bind. Assume that each, the MEI shock and the risk premium shock alone are insufficient
to force the ZLB to hold. Then, the effect of ut conditional on the realization of εit will have
a different dynamic effect than just ut taken alone, and it is unclear which value to assign
to ut within a HSD.

More precisely, we are interested in the series of vectors

{ht,z}
T

0 (E.1)

where z ∈ {1, 2, · · · , n} is in the set of all n types of shocks. εt = (ε1t , ε
2
t , · · · , ε

n
t ) is the

vector of all n shocks in the model. Each ht,z is the cumulative dynamic contribution of
shock z to vt. ht,z is hence recursive. We require for each period t that

n∑

z=1

ht,z = vt, (E.2)
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and at least that

{ht,z = 0 ∧ ht−1,z = 0 ⇐⇒ εzt = 0} ∀z = 1, 2, · · · , n (E.3)

i.e. that any zero shock has a zero net contribution to the HSD.
We propose a normalization method specific to models with OBCs for historic shock

decomposition such that the result is independent of any ordering effects. For convenience,
let us repeat Equation (7):

Ls(l, k,wt) =Nmax{s−l,0} (N+ cb)
min{l,s}

S(l, k,wt)

+ (I−N)−1(I−Nmax{s−l,0})cr̄.
(E.4)

Take as given the time series of smoothed shocks {εt}
T
0 that fully reproduces {vt}

T
0 . This

implies that we also have obtained the series of {l, k}. The law-of-motion from period t to
t+ 1 is then given by L1(l, k,wt). Note that S(l, k,wt) can be decomposed in a coefficient
term S̄v(l, k), that is to be pre-multiplied towt, and a constant term S̄c(k) that only depends
on k (see Boehl, 2020b for details).

Recalling that wt = vt−1 +Ξεt, we can write

(xt+1,vt)
⊺ = (E.5)

L1(l, k,vt−1, εt) =Nmax{1−l,0} (N+ cb)
min{l,1}

S̄v(l, k)vt−1

+Nmax{1−l,0} (N+ cb)
min{l,1}

S̄v(l, k)Ξεt

+Nmax{1−l,0} (N+ cb)
min{l,1}

S̄c(k)

+(I−N)−1(I−Nmax{1−l,0})cr̄,

(E.6)

where we are more explicit about the shocks. The first term is linear in vt−1, the second
term is linear in εt, whereas the third and forth term are, taking as given {l, k}, vectors of
constants.

Denote by Ξz the z-th column of Ξ, which corresponds to the shock εzt . For each z we
define ht,z by the recursion

(xt+1,z,ht,z)
⊺ = (E.7)

L1(l, k,ht−1,z, ε
z
t ) =Nmax{1−l,0} (N+ cb)

min{l,1}
S̄v(l, k)ht−1,z

+Nmax{1−l,0} (N+ cb)
min{l,1}

S̄v(l, k)Ξzε
z
t

+ωt,zN
max{1−l,0} (N+ cb)

min{l,1}
S̄c(k)

+ωt,z(I−N)−1(I−Nmax{1−l,0})cr̄,

(E.8)

where it is easy to show that Condition (E.2) is satisfied as long as
∑n

z ωt,z = 1 ∀t.46

The first two terms on the RHS of (E.7) are already the recursion of ht,z and the
decomposition respectively. The two other terms are left to be split up and attributed to
each shock, which – in terms of (E.7) – implies assigning the weights ωt,e such that Condition
(E.3) is satisfied.

46
xt+1,z is a by-product that we do not care about. We want ht,z .
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Define

ωt,z =
bNmax{1−l,0} (N+ cb)

min{l,1}
S̄v(l, k) (ht−1,z +Ξzε

z
t )

bNmax{1−l,0} (N+ cb)
min{l,1}

S̄v(l, k)wt

, (E.9)

i.e. ωt,z is proportional to the relative contribution of εzt to the constraint value rt.
Intuitively, this acknowledges that the values of {l, k} depend on the relation of the

scalar rt relative to r̄. The further below rt is of r̄, the longer the constraint will bind, and
the higher is k (note that the constant term will be zero for any l > 0). If the contribution
of εzt to a negative rt is large, then the respective weight ωt,z of the constant terms in
(E.7) attributed to εzt will be high, and vice versa. If however ht−1,z and εzt both are zero,
Condition (E.3) is satisfied.

For our application with the ZLB this means that the weight of constant terms for
each shock is proportional to the shock’s contribution to the total level of the shadow rate.
Further note that

∑

e

bNmax{1−l,0} (N+ cb)
min{l,1}

S̄v(l, k) ([ht−1,e|εt = 0] + εe,t) =

bNmax{1−l,0} (N+ cb)
min{l,1}

z̄v(l, k) ([vt−1|εt = 0] + εt) ,

(E.10)

and hence
∑

e ωt,e = 1, i.e. the weights sum up to unity.
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Appendix F Economic costs of the binding ZLB

Figure F.14: RANK model estimated to 1998-2019. On the left: Counterfactual dynamics if the ZLB would
not have posed a constraint to the nominal rate. On the right: Net effect of the binding ZLB.
Note: Means over 250 simulations drawn from the posterior.

As we have seen, a negative nominal interest would have been warranted by economic
conditions over long parts of the sample. The binding ZLB therefore is a constraint that
is economically costly. Figure F.14 illustrates these costs for the RANK model estimated
on the crisis sample. The bottom panels show that without the ZLB, interest rates would
have been far in negative territory, with the credible set roughly centered at around -0.4%
(1.6% in annual terms) for most of the duration of the ZLB spell. We report that this
counterfactual stimulus would have hardly increased inflation. However, there would have
been economically meaningful gains in output, which would have been up to 1% higher if the
ZLB would not have been binding. While our results are closely aligned to those reported
by Kulish et al. (2017), they stand in contrast to findings by Gust et al. (2017), who, in
particular for the Great Recession, report a deeper fall of the notational rate into negative
territory. While they report output costs that are roughly similar to ours, the effects of the
binding ZLB on price dynamics are far more pronounced in their framework due to their
estimate of a steeper Phillips Curve (0.07 vs. 0.007 in our estimate of the RANK model).
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Appendix G Challenges for the identification of forward guidance shocks

Figure G.15: RANK model estimated to 1998-2019. The net effect of monetary policy shocks. Red: mean
over smoothed states. Blue: no shocks after 2007. Orange: no shocks after 2008..
Note: Means over 250 simulations drawn from the posterior.

There exist an active literature on the effects of forward guidance (Eggertsson and Wood-
ford, 2003; Del Negro et al., 2015a; McKay and Reis, 2016).In Section 2 we report that the
monetary policy shocks ǫr can be interpreted as forward guidance shocks when the economy
is at the ZLB: although the actual policy rate is unaffected, the persistence of both the
exogenous process and the shadow rate will prolong the expected duration of the ZLB spell,
and promises lower rates even after the exit. Naturally, the nonlinear filtering procedure
will also provide a series of filtered/smoothed shocks for ǫr. Interpreting these shocks as
forward guidance shocks, they can be used to simulate counterfactuals, and to quantify the
effect of such policy.

Figure G.16 provides counterfactual simulations assuming that forward guidance shocks
are absent after 2007 and 2008, respectively. The dashed red line corresponds to the mean
over the actual smoothed states, i.e. including forward guidance shocks. For the blue lines,
forward guidance shocks are ignored after 2007. The right hand side of the figure illustrates
the net contribution of these shocks. Overall, our filtering procedure does not find any
sensible forward guidance shocks during the ZLB episode. The peak in the net effect of
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Figure G.16: RANK model estimated to 1998-2019. The net effect of a counterfactual 1% monetary policy
shock in 2010Q4 that raises the expected ZLB spell on average by 3 quarters.
Note: Means over 250 simulations drawn from the posterior.

inflation and output is almost entirely due to the early reaction of the Fed to lower rates
to the ZLB, which was quicker than suggested by the policy rule. As inflation and the
output gap did not yet decline, this can be instead interpreted as a reaction to the turmoil
in financial markets. We find that this emergency reaction prevented a substantially deeper
fall in inflation and output during the trough of the recession. Regarding the exit from ZLB,
we find that the smoothed nominal interest rate series leaves the ZLB a year after the actual
ZLB period ended. The very low federal fund rate in 2016 is therefore treated as having
the same effects on equilibrium dynamics as a binding ZLB. This might capture uncertainty
effects that could not explicitly included in our modelling approach.

Why are our estimated effects of forward guidance so weak, in particular compared
to Gust et al. (2017)? As Figure G.16 shows, a counterfactual one-percent shock to the
shadow rate in 2010Q4 would have extended the duration of the expected ZLB spell by
about 3 quarters and would have had a considerable effect on output and inflation. These
strong effects are not surprising given the results by Del Negro et al. (2015a) on the forward
guidance puzzle. To address the question of what role forward guidance plays in our RANK
model, note that in our model by construction the risk premium shock always appears
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together with the nominal rate. Also recall that across models the risk premium shock was
one of the main, if not the main driver of the post-2008 US economic dynamics. Throughout
our sample, the risk premium is positive.

A forward guidance shock will be very hard to distinguish from a negative risk premium
shock. While in normal times, the risk premium and monetary policy shock are easy to
identify via the response of the policy rate, this is not possible at the ZLB. Any positive
forward guidance shock would require additional risk premium shocks to maintain the low
level of consumption and investment. For this reason it is more likely to attribute any
increase in consumption or investment to decreases in the risk premium process as these are
in the nature of an stationary AR(1) process, and not to a positive forward guidance shock.
Put differently, at the ZLB we essentially filter 6 observables with 7 structural shocks, of
which two are observationally equivalent, and one of which is already identified to be at an
elevated level. This explains why we are unable to identify strong forward guidance shocks.

How can this finding be interpreted in the light of the results of Gust et al. (2017) and
Jones et al. (2018)? The former use the particle filter to approximate the distribution of
states. This practically implies the use of considerable measurement errors for the filter.
The authors set the model-implied ZLB to exactly zero, whereas we use the highest realized
value of the FFR during the ZLB episode (c.f. Section 3). This means in practice that,
in the absence of any measurement errors, their model-implied ZLB never actually binds.
We suspect that, as a binding ZLB helps to explain the large drop in output in response
to a risk premium and MEI shocks, the filter treats the actual observation of the FFR as a
measurement error and assumes the actual FFR to be straight at zero. This way, the actual
level of the FFR relative to the model-implied ZLB of zero enters the filtering process and
potentially manifests in the finding of positive forward guidance shocks.

As for the case of Jones et al. (2018), the authors identify the ZLB durations in the
estimation as in Kulish et al. (2017). In a second step they feed the estimated ZLB du-
rations and the smoothed shock series obtained in posterior sampling into the model and
use the solution method by Jones (2017) to determine the endogenous ZLB-durations. Any
deviation of the spell durations identified by the posterior is then presumed to be the result
from central bank communication. In the absence of any additional data input, this setup
is likely to be subject to the same problem as in our model: forward guidance shocks will be
hard to distinguish from risk premium shocks. However, the specific setup of the authors
allows to include term premium data to the estimation. The authors argue that the term
premium contains information on the future course of interest rates, and can hence be used
to correctly identify forward guidance shocks via the estimated spell durations, and distin-
guish their effects from those of risk premium shocks.47 While we can not test whether this
holds in practice, we considered as a sound argument to overcome the problems sketched in
this section.

47In practice, including the term premium as an observable is also possible with our methodology. Note
that we can find the expected future value in period t + s of all variables via Equation (7), which could
easily be linked to an observable. We abstain from doing so because we feel that the interest in the effects
of forward guidance has decreased over the recent years.
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Appendix H Evolution of the natural rate

Figure H.17: RANK model estimated over different samples. Evolution of the natural rate.
Note: Means over 250 simulations drawn from the posterior.

Following Laubach and Williams (2003), an active literature has used different ap-
proaches to estimate the natural real interest rate, or ‘r-star’. While the most prominent
approach is to employ semi-structural models (see, e.g., Laubach and Williams (2003), Hol-
ston et al. (2017)), other frameworks such as VARs, VECMs and affine term structure
models have been considered in this literature. In addition, Edge et al. (2008) and Neri and
Gerali (2019) provide examples for the use of DSGE model in obtaining estimates of the
natural rate. As a contribution to this literature, Figure H.17 displays the paths of the US
natural rate that are implied by our estimates of the RANK model on several samples. It
shows that our model predicts a decline of r-star far into negative territory after the Finan-
cial crisis as well as a return to positive territory at the end of the sample. This finding
stands in contrasts to estimates of the natural rate according to the models by Laubach
and Williams (2003) and Holston et al. (2017), which imply that r-star remained positive
throughout the crisis. Apart from the considerable uncertainty surrounding estimates of
r-star, this discrepancy is mainly due to the fact, that DSGE model estimates of the natural
rate cannot capture its trend-component. However, according to semi-structural estimates,
the trend-growth of output supported r-star in the financial crisis and kept it in positive
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territory. In contrast, the path of r-star in our DSGE model merely captures its cyclical
components. Specifically, it reflects fluctuation of the real rate in the frictionless equilibrium
around the model’s steady state.

Appendix I Additional historical shock decomposition of the crisis

Figure I.18: TANK Model estimated to 1998-2019. Decomposition of the smoothed time series into the
contribution of the different shocks.
Note: Means over 250 simulations drawn from the posterior. The contribution of each shock is normalized
as in Appendix E.
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Figure I.19: FRANK-R model – with financial instead of MEI shock – estimated to 1998-2019. Decompo-
sition of the smoothed time series into the contribution of the different shocks.
Note: Means over 250 simulations drawn from the posterior. The contribution of each shock is normalized
as in Appendix E.
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Figure I.20: RANK – estimated to 1983-2008. Decomposition of the smoothed time series into the contri-
bution of the different shocks.
Note: Means over 250 simulations drawn from the posterior. The contribution of each shock is normalized
as in Appendix E.
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Appendix J Additional impulse response functions

Figure J.21: IRFs to a MEI shock in TANK estimated for 1998-2019. Compared with mean IRFs to RANK.
Note: Medians over 250 simulations drawn from the posterior with 90% credible set for TANK. Shock size
is the posterior mean standard deviation for each model
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Appendix K Exogenous processes and innovations

Figure K.22: Smoothened exogenous processes for the different models, sample 1998-2019. 95% confidence
intervals of 250 draws from the posterior.
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Figure K.23: Smoothened innovations to exogenous processes for the different models, sample 1998-2019.
Shocks are normalized to the standard deviation of the parameter draw. 95% confidence intervals of 250
draws from the posterior.
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