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Abstract

I have assessed changes in the monetary policy stance in the euro area since its incep-
tion by applying a Bayesian time-varying parameter framework in conjunction with the
Hamiltonian Monte Carlo algorithm. I find that the estimated policy response has varied
considerably over time. Most of the results suggest that the response weakened after the
onset of the financial crisis and while quantitative measures were still in place, although
there are also indications that the weakening of the response to the expected inflation gap
may have been less pronounced. I also find that the policy response has become more
forceful over the course of the recent sharp rise in inflation. Furthermore, it is essential to
model the stochastic volatility relating to deviations from the policy rule as it materially
influences the results.
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1. Introduction

Simple policy rules have often been applied to assess the stance of monetary policy

since the seminal contribution made by Taylor (1993). Several studies exist – mainly

for the US – which estimate simple rules using regime-switching models or time-

varying parameter frameworks to find evidence of changes in monetary policy over

time (e.g. Sims (2001), Cogley and Sargent (2001, 2005), Boivin (2006), Kim and

Nelson (2006), Sims and Zha (2006)).1 However, the latter strand of the literature

appears to be limited for the euro area.

In this paper I expand the available literature by estimating the evolution of the

monetary policy response in the euro area since the inception of monetary union. I

apply a Bayesian non-linear framework in combination with the Hamiltonian Monte

Carlo (HMC) algorithm, which is superior to other existing sampling methods owing

to its efficiency and unique diagnostic features. This modelling framework allows

for both time-varying parameters and heteroscedasticity within a euro-area-specific

monetary policy rule and does not require any linear approximation or the application

of the Kalman filter. I scrutinise to what extent the non-standard monetary policy

measures have influenced the policy response in the aftermath of the financial crisis

and attempt to shed light on the role that monetary policy may have played in the

run-up to the recent sharp rise in inflation in the euro area. Furthermore, I evaluate

the European Central Bank’s (ECB) recent policy response to the surge in inflation.

A remarkable amount of earlier literature provides point estimates mostly of

Taylor-type or ad-hoc reaction functions of the ECB.2 Gorter et al. (2010) applied

a rolling-window OLS approach to assess possible changes in the ECB’s reaction

function during the financial crisis, while Gerlach and Lewis (2014a, 2014b) used a

smooth transition framework to allow for shifts between two different parameter sets

for the estimated reaction function. Rostagno et al. (2019) estimated policy rules for

1Earlier studies such as e.g. Judd et al. (1998), Clarida et al. (2000) or Orphanides (2004) used
subsample analysis for this purpose.

2See, for example, the studies cited in Blattner and Margaritov (2010) or Gerlach and Lewis
(2014b).
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the period from 1999 to 2008 and found a more forceful response when inflation was

above its 2 percent target than when it was below this level. Maih et al. (2021) esti-

mate, among other things, a regime-switching version of the Smets-Wouters DSGE

model up to the end of 2014.2. They allow for an endogenous switch of the coeffi-

cient on inflation within a smoothed Taylor-type policy rule depending on whether

inflation is above or below its target. They conclude that until mid-2014 the ECB

responded more forcefully to inflation of above 1.9 percent than it did to inflation

below that level. Furthermore, based on their estimation results up to mid-2014,

they show by likelihood comparison that the ECB conducted a symmetric policy

during the period after mid-2014. One drawback with this approach is that it does

not enable the policy response to be directly estimated while quantitative easing was

in place. In addition, only the switch in the ECB’s response to inflation is taken

into account, although its response to other economic aggregates within the policy

rule may also have changed, which would probably alter the relevant results. Fur-

thermore, this methodology does not allow continuously changing responses during

the assessed period to be estimated. Paloviita et al. (2021) use GMM and a rolling-

window approach to estimate a large variety of Taylor-type policy rules for the period

from 1999 to 2014. They conclude that policy responses have been asymmetric, with

the responses to inflation overshooting its target being more forceful than those to

inflation undershooting.

This paper departs from the framework applied in Orphanides and Wieland

(2013) (OW henceforth) and Bletzinger and Wieland (2017) (BW henceforth). They

characterise the ECB’s reaction function by assuming that the policy rate is set

according to the following rule:

it = it−1 + θ1(πt+3|t − π∗) + θ2(qt+2|t − q∗t+2|t) (1)

Here, i denotes the policy rate, π the inflation rate, π∗ the inflation target, q the

growth rate of real GDP and q∗ the growth rate of real potential GDP. The subscript

t+ i|t refers to the expected value at time t of a particular variable i quarters ahead.
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A change in the policy rate compared with the level in the previous period occurs

when expected inflation deviates from the central bank’s inflation target or expected

GDP growth deviates from expected potential growth. OW show that by setting the

parameters θ1 and θ2 to 0.5 each and the inflation target to 1.5 or 2.0, the policy

rate prescriptions under the policy rule using data from the Survey of Professional

Forecasters (SPF) and the European Commission are very similar to the policy rate

set by the ECB over time. This rule for the euro area was estimated by, among

others, Smets (2010), BW and Hartmann and Smets (2018) (HS henceforth), who

applied the following framework:3

∆it = c+ θ1πt+3|t + θ2(qt+2|t − q∗t+2|t) + ϵt (2)

where ∆it is the change in the policy rate compared with the previous period, c

is a constant and ϵt denotes the error term with ϵt ∼ N(0, σ2). Consequently, the

estimated inflation target is given by π∗ = c/θ1. BW estimated θ1 and θ2 at 0.49

and 0.40, respectively, and the inflation target at 1.72 in their baseline specification.

HS estimated the above parameters with staff projections of the ECB/Eurosystem

instead of SPF forecasts for the period from 1999.1 to 2018.1 in their baseline speci-

fication at 0.34, 0.37 and 1.81, respectively. To assess the stability of the parameter

estimates over time HS carried out the estimation with a shortened sample until

2012.2. They report that the estimation results differ only slightly from the esti-

mates based on the full sample suggesting that the regression coefficients should

remain stable over time.

The latter studies have major shortcomings, though. Firstly, they partly disre-

gard that the reaction function of a central bank can vary over time. Even if the

regression is estimated on a shorter sample as in HS, the estimated inflation target

will change as well, although the monetary policy strategy remained the same over

the entire sample period. This will possibly bias the estimates of the reaction coef-

ficients. Secondly, these studies do not take account of the effect that quantitative

3Smets (2010) regressed the interest rate on its lag but estimated fairly high values from 0.89
(baseline setup) up to 0.97, depending on the model specification.
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easing has on the key policy rate. Although HS, for example, used a time series

for their estimation which combined the changes in the MRO up to 2008.3 with

the changes in the deposit rate from 2008.4 onwards, the latter series may not fully

capture the magnitude of the non-standard measures adopted by the ECB in the af-

termath of the financial crisis. Thirdly, none of these studies applied a time-varying

parameter framework, which would provide accurate estimates of the central bank’s

response in the euro area over time and may therefore result in wrong inference if

comparing different time periods.

In this paper I attempt to remedy these shortcomings by providing a consistent

framework for measuring continuous changes in the monetary policy response up to

the present. I find that the estimated policy response has varied considerably over

time. In particular, most of the results suggest that the policy response weakened

after the beginning of the financial crisis and while quantitative measures were in

place. There are also indications, however, that the weakening of the response to the

expected inflation gap may have been less pronounced, depending on the data set

used for estimation purposes. I also find that the policy response has strengthened

during the recent surge in inflation. Moreover, the introduction of stochastic volatil-

ity associated with deviations from the policy rule is also essential, as it materially

affects the results.

The rest of this paper is organized as follows. Sections 2 describes the model

setup and the estimation approach. Section 3 provides a description of the data.

Section 4 discusses the baseline results. Section 5 presents robustness checks and

extensions of the baseline framework. Section 6 concludes the paper.

2. A Bayesian time-varying parameter representation

To describe the law of motion of the ECB’s response to macroeconomic aggregates

I apply a Bayesian non-linear regression framework with time-varying parameters

which is well suited to capture the gradual change in the response of monetary

policy over time. I estimate the policy rule from OW, similarly to BW, but treat the

reaction coefficients θ1,t and θ2,t as being random to obtain the posterior densities of

4



both coefficients for all points in time t in the period from 1999.2 to 2021.2 for the

euro area.

2.1. The model

The model can be represented by means of a non-linear state space where the

observation equation is given by

yt = f(Xt, θ̃t) + ϵt t = 1, ..., T. (3)

yt is a scalar variable, θ̃t is a K×1 dimensional vector of parameters to be estimated,

Xt is a vector of predetermined or exogenous variables and ϵt is the error term. For

this case, yt is set to be the change in the key policy rate at time t, ∆it, the left-hand

side of the policy rule in OW. The time-varying coefficients are treated as the hidden

state vector in the state space. To describe the dynamics of the reaction coefficients,

θ1 and θ2, over time, I postulate a driftless random walk process:

θi,t = θi,t−1 + νi,t i = 1, 2 (4)

where I assume that ν ′t := (ν1,t, ν2,t) is i.i.d. with a covariance matrix Q. This allows

to characterize the evolution of θt := (θ1,t, θ2,t) over time as follows:

p(θt+1|θt,Ω) ∝ h(θt+1|θt,Ω) (5)

where p(θt+1|θt,Ω) is the conditional probability density of the state vector for the

next period, θt+1, given the state vector in the current period, θt, as well as Ω,

denoting the covariance matrix of the state space to be defined below and

h(θt+1|θt,Ω) ∼ N(θt, Q). (6)
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Furthermore, I also assume that the error terms, (ϵt, ν
′
t)

′, are i.i.d. normal random

variables with zero mean and a covariance matrix

Ω :=

ϵt
νt

[
ϵt ν ′t

]
=

σ2 C ′

C Q

 (7)

where σ2 is the variance of ϵ. Q is the covariance matrix of the innovations of the state

equation and C denotes the cross covariances. To derive the joint likelihood function

let us first define θ̃t := (θt, π
∗), the vector consisting of the states at time t and the

inflation target. In the following I will denote the partial histories of the states and

the observed variable by θt := [θ1, ..., θt] and Y t := [y1, ..., yt], respectively, for all

t = 1, ..., T . Consequently, the partial history of θ̃ is defined as θ̃t := [θ1, ..., θt, π
∗].

To derive the joint posterior density function one can exploit first the probabilistic

structure of the random walk process characterizing the time-varying parameters:

p(θT |Ω) = p(θ0|Ω)
T−1∏
t=0

p(θt+1|θt,Ω). (8)

According to Bayes’ law, the posterior density can be expressed as the product of

the likelihood and the joint prior:

p(θ̃T ,Ω|Y T ) ∝ p(Y T |θ̃T ,Ω)p(θ̃T ,Ω). (9)

Since the observations are conditionally independent and by assuming that the cross

covariance is zero, the likelihood can be factored as follows:

p(θ̃T ,Ω|Y T ) ∝ p(θ̃T ,Ω)
T∏
t=0

p(yt|θ̃T ,Ω) = p(θ̃T ,Ω)
T∏
t=0

p(yt|θ̃t,Ω). (10)

The equation holds because the policy rate setting rule does not depend on future

values of the reaction coefficients. Furthermore, given the probabilistic structure of

θ stated above and since the central bank changes the policy rate only in response

to the expected inflation gap and the expected growth gap, the posterior can be
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expressed as follows:

p(θ̃T ,Ω|Y T ) ∝ p(θ̃T ,Ω)
T∏
t=0

p(yt|θ̃t,Ω). (11)

Following Koop (2003) the likelihood function of the non-linear univariate regression

model can be written in vector form:

p(y|θ̃, σ) = 1

(2πσ2)N/2

{
exp

[
− 1

2σ2
{y − f(X, θ̃)}′{y − f(X, θ̃)}

]}
. (12)

Setting f(X, θ̃) = θ1(π
e − π∗) + θ2(q

e − q∗,e) the likelihood will translate into

p(Y T |θ̃T ,Ω) =
T∏
t=0

1

(2πσ2)1/2

{
exp

[
−(yt − f(Xt, θ̃t))

2

2σ2

]}
(13)

with f(Xt, θ̃t) := θ1,t(πt+3|t − π∗) + θ2,t(qt+2|t − q∗t+2|t). (14)

The joint prior can be further rewritten by factoring it into the conditional prior for

θT and the joint density of the inflation target and the state space covariance:

p(θ̃T ,Ω) ≡ p(θT , π∗,Ω) = p(θT |π∗,Ω)p(π∗,Ω). (15)

I assume that the central bank response is characterized by a random walk process

which does not depend on the inflation target. This may appear slightly restrictive,

however it could be very challenging to specify a relation and consequently a condi-

tional distribution for θ depending on π∗ as well, if there exists any at all. Therefore,

given the assumption that the central bank response is independent from π∗, the

latter can be dropped from the conditional distribution of θT , so one can make di-

rectly use of equation (8). Furthermore, assuming that the initial state, θ0, and the

covariance matrix of the state space are independent, the prior can be expressed as

follows:

p(θT |π∗,Ω)p(π∗,Ω) = p(π∗)p(Ω)p(θ0)
T−1∏
t=0

p(θt+1|θt,Ω). (16)

7



To complete the model the prior distributions have to be specified. In the baseline

setup, I assume a Gaussian distribution for the initial states:

p(θ0) ∝ N(θ̄, P̄ ) (17)

with θ̄ = (0.5, 0.5) and a diagonal P̄ matrix. I set a relatively wide prior with

entries on the main diagonal of P̄ being equal to p̄11 = p̄22 = 4 to let the data

determine the initial value. The prior distribution of the inflation target is assumed

to be π∗ ∼ N(1.9, 0.152) which reflects the monetary policy strategy of the ECB,

in particular that inflation is targeted to be ”below, but close to 2 percent”. For

the prior distribution of the state space covariance matrix, Ω, I will assume that

the cross covariance, C, is zero. Furthermore, the covariance matrix structure of

the state equation innovations, Q, is assumed to be diagonal. Consequently, for

the standard deviation of both random walk innovations, σν1 and σν2 , and for the

standard deviation of the error term in the policy rule, σ, I will posit an inverse

gamma distribution with an expected value of 0.2 and a relatively wide standard

deviation of 0.2, respectively.4 I will use the above priors to first estimate the model

on the training sample between 1999.2 and 2001.4. Subsequently, the results obtained

using the latter sample will be set as priors for the estimation of the complete sample.

2.2. Simulation of the posterior density

The estimation of the policy rule from (1) in its original form in conjunction

with time-varying coefficients poses a serious challenge as the observation equation

is non-linear. A straightforward approach to address non-linearity issues would be

to follow the setup in BW, yet to estimate equation (2) with a time-varying inter-

cept and to rely on established estimation methods. However, this would result in

identification problems and disregard at the same time that the estimated intercept

depends on θ1. Furthermore, the implied inflation target would be time-varying as

well. Assuming that θ1 and θ2 are time-varying requires the estimation of more than

4This corresponds to ∼ IG(α, β) with α = 3 and β = 0.4.
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2T parameters. A readily available Bayesian estimation method capable of sampling

from high-dimensional distributions, given that a posterior distribution can be de-

rived, is the HMC algorithm. The latter approach has been widely applied in other

fields of science owing to its efficiency and superior diagnostic features, see e.g. Neal

(2011) and Betancourt (2017). The main idea of the HMC algorithm is to extend

the parameter space by an auxiliary vector of momentum variables, α, to obtain the

joint posterior density of θ̃T , Ω and α:

p(θ̃T ,Ω, α|Y T ) ∝ p(Y T |θ̃T ,Ω, α)p(θ̃T ,Ω, α). (18)

To each parameter to be estimated in the original model, one momentum variable αi

is assigned which is a priori independent of θ̃T , Ω and Y T so that p(θ̃T ,Ω, α|Y T ) ∝

p(Y T |θ̃T ,Ω)p(θ̃T ,Ω)p(α). In the extended parameter space one can apply Hamil-

tonian dynamics, a well known concept from physics. The Hamiltonian equation

describes the total energy of a frictionless mechanical system, in particular the po-

sition and the momentum of a moving particle. In this extended framework, the

model parameters to be estimated are considered as the position of a particle. In

a frictionless mechanical system the Hamiltonian equation ensures that the energy

is conserved. Consequently, the application of the Hamiltonian equation in this ex-

tended parameter space allows to find an update proposal which is distant from the

original position of the particle, that is, of the parameters to be estimated, while the

acceptance rate remains very high, even if the dimension of the parameter space is

high. For further details I refer to Neal (2011) and Betancourt (2017) who provide an

excellent description of the methodology along with its superior features compared

to standard random walk based sampling methods.

3. Data description

I use a quarterly data set for the estimation which is partially compiled from

monthly data. As regards the change in the key policy rate I use the first difference

of the main refinancing operations (MRO) rate of the ECB until 2008.2. From
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2008.3 onwards, when the global financial crisis started to affect the euro area, I

replace the latter series with the first difference of the shadow interest rate series.

Thereby I account for the impact of non-conventional measures in periods when the

effective lower bound was possibly binding. I also remedy a further shortcoming in

the existing literature which does not take at all, or at least not properly, account of

the effects of the quantitative measures carried out by the ECB. Although HS uses

the deposit rate instead of the key policy rate from 2008.4 onwards, the latter series

reflects the changes in the policy rate only partly, at best, as can be seen in Figure

1. Two different monthly shadow rate series are regularly estimated and updated

Figure 1: Interest rates, expected inflation and growth gap in the euro area

(a) Policy Rates and Shadow Rates (b) Expected Inflation and Growth Gap

Notes: Plot (a): the dashed line shows the MRO rate and the dotted line the deposit facility rate
of the ECB. The blue and the red lines represent the shadow interest rates based on the Krippner
and the Wu-Xia datasets, respectively. Plot (b): the blue line shows the expected HICP inflation in
t+3, while the red line represents the difference between the expected GDP growth and forecasted
potential GDP growth in t+ 2.

by Krippner and Wu, respectively, based on their previous studies (Krippner (2013,

2015); Wu and Xia, (2017, 2020)). The series differ remarkably, therefore I will carry

out all estimations with both series separately. In each case, also for the MRO,

I use rates in the second month of the quarter to build the first differences, as the

Survey of Professional Forecasters (SPF), where the expected HICP inflation and the

expected GDP growth series stem from, are published at the end of the first month

each quarter. Therefore, both explanatory variables could be considered as weakly

exogenous. As in BW and HS, I use the 4-quarters-ahead forecasts from the most

recent data point available for both explanatory variables. I use forecast data from

the SPF, in particular, expected yearly HICP inflation in t+3 quarters and expected
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yearly GDP growth in t+ 2 quarters ahead owing to the different availability of the

HICP and the GDP growth data series. To calculate the forecasted yearly potential

growth rate on a quarterly basis I rely on the yearly estimates and projections of the

European Commission as no publicly available estimates are provided by the ECB

and transform the periodicity of the series by quadratic interpolation.5

Figure 1 shows that in normal times, when the central bank was not constrained

by the zero lower bound and large scale asset purchases were not used as a stan-

dard policy instrument, the shadow rates differ only marginally from the MRO rate.

However, with the onset of the financial crisis and the subsequent introduction of

the non-standard measures the shadow rates fell significantly below the MRO rate.

Although the gap between the shadow rates and the MRO rate closed in the first half

of 2011, the subsequent measures taken to support both the private and the public

sector in the euro area caused the shadow rates to diverge again significantly from

the MRO rate. The gap widened even further with the introduction of the different

asset purchase programmes until the end of 2016 when the pace of the asset pur-

chases decreased. At this point, according to both data sets the shadow rate hovered

around in negative territories well below the MRO rate and both shadow rate series

showed a similar pattern. From the end of 2016 they exhibited a markedly different

dynamics though. As a consequence of the subsequent reduction in net asset pur-

chases the Krippner series has already signaled a tightening while according to the

Wu-Xia series the shadow rate became even more negative. The different evolution

continued until the termination of the asset purchase programmes at the end of 2018.

From 2019.2 both series pointed again to an easing in accordance with the relaunch

of the longer term refinancing operations and the restart of the asset purchases when

inflation expectations started deteriorating again. Although at the beginning of the

pandemic a further asset purchase programme was announced both shadow rate

series fail to signal a monetary easing. This feature is possibly attributable to a

substantial increase in the demand for liquidity due to the complete shutdown of

5I rely on the standard procedure provided in the software package Eviews.
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the economy. In the first half of 2021 the shadow rates signaled again a tightening

due to the repeated pandemic related shutdown of numerous economies in the euro

area. Both the MRO and the deposit rate rate barely changed from 2015 onwards

and clearly failed to reflect the impact of quantitative easing adequately. Therefore,

the application of shadow rates for the estimation is warranted.

As regards expected inflation, it follows the same pattern as the realized infla-

tion. It is less volatile, however, and significantly smoother than the realized series.

Until the beginning of 2008 it remained close to two percent and shortly before the

start of the financial crisis it picked up slightly. Following the relatively steep de-

cline it returned again to two percent. After the outbreak of the sovereign debt

crisis in the euro area expectations gradually declined until the beginning of 2015

to approximately 0.75 percent. In course of the pickup in economic activity infla-

tion expectations gradually moved back again to slightly less than 1.7 percent at the

end of 2018. With the slowdown of the economy and the subsequent outbreak of

the pandemic it declined continuously until mid-2020 and has been increasing since

then. The expected growth gap series follows the pattern of the realized series but

exhibits a smooth dynamics. However, in general it captures periods of overheating

and positive growth gap less well. Given its forward looking nature the spike in the

growth gap occurs two periods earlier, as after the first wave of the pandemic with

the reopening of the economy it became foreseeable that the economic activity will

return to approximately previous levels.

4. Results

To estimate the model I applied Stan, a state-of-the-art, freely available software

which implements the HMC algorithm in combination with the No-U-Turn (NUTS)

sampler.6 For the baseline estimation I trained the model with the priors from Section

6To summarize, the NUTS sampler ensures that in the extended space, in that Hamiltionian
dynamics is applied to find an update proposal, the HMC algorithm stops at some point where
the distance from the original point of departure does not increase anymore. Hence, the algorithm
makes no u-turn which would lead to a waste of computational resources. For further details on
the NUTS sampler I refer to Hoffman and Gelman (2014).
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2 on the data sample from 1999.2 to 2001.4. The fine-tuning of the HMC/NUTS

Table 1: Priors and posterior estimates – training sample from 1999.2 to 2001.4

Prior Posterior

Param. Density Mean Std Mean Std [0.05, 0.95]

π∗ Normal 1.90 0.15 1.87 0.11 [1.72, 2.07]
σ InvGamma 0.20 0.20 0.20 0.056 [0.12, 0.30]
σν1

InvGamma 0.10 0.05 0.18 0.14 [0.063, 0.44]
σν2

InvGamma 0.10 0.05 0.16 0.094 [0.061, 0.34]
θ1,0 Normal 0.50 2.00 0.91 0.44 [0.26, 1.67]
θ2,0 Normal 0.50 2.00 0.89 0.37 [0.37, 1.54]

θ1 – – – 0.90 0.55 [0.11, 1.84]

θ2 – – – 0.76 0.22 [0.41, 1.14]

Notes: The table shows the prior distributions set for the estimation of the model on the training
sample comprising the time period from 1999.2 to 2001.4 and the posterior means, standard devi-
ations and the 90 percent credible intervals (in brackets) of the particular parameters. The values
for θ1 and θ2 correspond to the average of the estimated posterior means and standard deviations
of each individual θ1,t and θ2,t at time t over the period from 1999.2 to 2001.4.

sampler was carried out automatically by Stan based on a burn-in sample of 10,000

draws for each of the four chains. The estimates for the posterior distributions were

obtained based on 50,000 sample draws per chain. The estimated posterior means

and standard deviations for the training sample are summarized in Table 1. These

posteriors were taken then as priors for the main estimation exercise making use of

the complete data set until 2021.2.

For the period from 1999.2 to 2001.4 the posterior mean for the inflation target,

π∗, is estimated at 1.87 percent which corresponds almost to its prior mean. Yet,

the standard deviation is lower than initially assumed implying that the data is

informative. The posterior means of the initial values of both response coefficients,

θ1,0 and θ2,0 are considerably higher with approximately 0.9 than their prior means

and significantly more narrow with estimated standard deviations of 0.44 and 0.37,

respectively. The averages of the posterior estimates of each individual θ1,t and

θ2,t at time t over the period from 1999.2 to 2001.4, denoted by θ1 and θ2, are

estimated at 0.90 and 0.76. This implies that the response to the expected growth

gap declined over the first three years. The conditional standard deviations of the
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random walk processes of the time-varying reaction coefficients, σν1 and σν2 , are

lower with 0.18 and 0.16 than initially assumed and their posteriors are more tightly

shaped. The estimation based on the complete sample was carried out again with four

Figure 2: Posterior estimates of time-varying reaction coefficients

(a) Expected Inflation Gap (b) Expected Growth Gap

Notes: Plot (a) shows the estimates for the time-varying response to the expected inflation gap,
θ1,t, and plot (b) to the expected growth gap, θ2,t. The blue and the red lines refer to the results
obtained with the Krippner and with the Wu-Xia shadow rate rate series, respectively. The dashed
lines correspond to the estimates for the period from 2002.1 to 2021.2 and the solid lines to the
period from 1999.2 to 2021.2. The priors are set according to the results in Table 1.

parallel chains, each with a burn-in of 10,000 draws to fine-tune the HMC/NUTS-

sampler and subsequently with 50,000 sample draws. For the sake of completeness,

I carried out the estimation both on the sample from 2002.1 to 2021.2 by excluding

the training sample and on all available data from 1999.2 to 2021.2 as well, see

Figure 2. To this respect, the results differ only marginally. Including the data in

the sample from 1999.2 to 2001.4 as well results in a smooth continuation of the

estimates. However, one needs to acknowledge that for the latter case the priors are

not entirely valid as also future information is used. The intention was to showcase

whether and to what extent the estimation results with respect to the future response

are influenced by the initial period of a seemingly aggressive response by the ECB

at the end of the 1990s when reputation had to be build up. The evolution of the

response to the expected inflation gap is shown in plot (a) and to the expected

growth gap in plot (b). The blue lines refer to the estimation results obtained by

using shadow rates from 2008.3 onwards provided by Krippner while the red lines

show the results when carrying out the estimation with the Wu-Xia shadow rate
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series.7 In general, both reaction coefficients feature a declining trend over time.

In particular, the average response of the ECB to expected deviations from the

inflation target has declined from its relatively high initial values but stabilized then

around 0.5. With the beginning of the financial crisis, the response of the ECB to

the expected inflation gap has declined further though. Considering the estimation

results based on the shadow rates provided by Krippner, the softening continued and

became statistically significant towards the end of the sample period. By contrast,

the results obtained with the Wu-Xia series suggest that the response to the expected

inflation gap rebounded in the aftermath of the financial crisis and reached values

in the range of 0.5. Following its local peak at the beginning of 2016 it has been

declining at an increasing pace and reached almost as low values as the response

obtained with the Krippner series. The difference in the parameter estimates can

be explained by the steep negative progression of the Wu-Xia shadow rate series.

The response to the expected growth gap has also declined since the financial crisis

and converged to zero if estimated with the Krippner series. The estimation results

obtained with the Wu-Xia series exhibit a similar pattern, yet the response is more

volatile. After 2015 it reaches even negative values but turns out to be positive at

the end of the sample period.

The posterior estimates for the time-invariant parameters and the initial values

of the response to the expected inflation gap and the expected growth gap are shown

in Table 2. The estimated posterior mean of the inflation target, π∗, is slightly lower

than the estimate obtained using the training sample. Both estimates of π∗ obtained

with the two different shadow rate series, are almost similar, 1.83 if estimated with

the Krippner series and 1.81 with the Wu-Xia series. Furthermore, the estimated

posterior standard deviations are also lower with 0.09 and 0.08, respectively, than the

estimates obtained with the training sample. The posterior mean of σ, the standard

deviation of the remainder in the policy rule, is approximately twice as large if

compared with the estimate based on the training sample. With the Krippner series

7Figure A.1 in the Appendix shows the results in separate charts including the 90 percent credible
intervals.
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it is estimated at 0.43 that is larger to some extent than the result obtained with

the Wu-Xia series, namely 0.37. The posterior means of the conditional standard

deviations of the time-varying response to the expected inflation gap, σν1 , are lower

than for the training sample and are fairly similar for the two different shadow

rates series, estimated at 0.13 and 0.14, respectively. The standard deviations of

the posterior distributions of σν1 are considerably lower with 0.080 and 0.093. The

posterior mean of the conditional standard deviation of the time-varying response to

the expected growth gap, σν2 , differs though for the two different data sets, estimated

at 0.10 with the Krippner series and at 0.18 with the Wu-Xia series. Hence, the

Wu-Xia series generates a more volatile response to the expected growth gap than

the Krippner series. Furthermore, the posterior standard deviations of σν2 for both

shadow rate series, estimated at 0.035 and 0.084 respectively, are also lower than

the estimates obtained with the training sample, especially the one for the Krippner

series.

Table 2: Posterior estimates for the time period from 1999.2 to 2021.2

Krippner Wu-Xia

Param. Mean Std [0.05, 0.95] Mean Std [0.05, 0.95]

π∗ 1.83 0.090 [1.68, 1.98] 1.81 0.080 [1.69, 1.95]
σ 0.43 0.035 [0.38, 0.49] 0.37 0.042 [0.31, 0.44]
σν1

0.13 0.080 [0.057, 0.26] 0.14 0.093 [0.059, 0.26]
σν2

0.10 0.035 [0.057, 0.17] 0.18 0.084 [0.074, 0.34]
θ1,0 0.66 0.38 [0.063, 1.30] 0.73 0.37 [0.14, 1.36]
θ2,0 0.71 0.17 [0.43, 1.00] 0.74 0.19 [0.44, 1.06]

Notes: Posterior estimates of the time-invariant parameters and the initial values of the time-varying
reaction coefficients obtained with the Krippner and the Wu-Xia shadow rate series, respectively,
for the time period from 1999.2 to 2021.2. The corresponding 90 percent credible intervals are
displayed in brackets. The priors are set according to the results in Table 1.

The sophisticated diagnostics unique to the HMC/NUTS algorithm did not sig-

nal any severe issues related to the sampling which would invalidate the results.8

8The Stan package comes along with a handy diagnostics interface, ShinyStan. An introduction
to the diagnostics which is superior to those available to commonly applied MCMC-based algo-
rithms, can be found in the references in the documentation available to Stan Development Team
(2017).
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In particular, there are no divergent sample draws at all. This indicates that the

posterior likelihood surface does not exhibit any severe irregularities such as cliffs

or areas with high local curvature which would prevent the sampler from exploring

the posterior likelihood surface properly. In addition, the sampler did not reach

the maximum tree-depth implying that the NUTS sampler could always traverse

the posterior likelihood surface for an optimal distance along the Hamiltonian path.

However, the energy level diagnostics, see Figure A.2 in the Appendix, suggests that

the posterior exhibits heavy tails which may be challenging to sample from. Fig-

Figure 3: Posterior distribution estimates of time-invariant parameters

π∗

Krippner Wu-Xia

σ

σν1

σν2

Notes: Posterior distribution estimates of the time-invariant parameters: inflation target, π∗, stan-
dard deviation of the error term in the policy rule, σ, and standard deviations of the random walk
innovations governing the time-varying reaction coefficients, σν1

and σν2
. The priors are set ac-

cording to the results in Table 1. Estimation period: 1999.2–2021.2.

ure 3 shows the marginal distributions of the posterior with respect to the inflation

target, π∗, the standard deviation of the error term in the policy rule, σ, and the

standard deviations of the innovations in the random walk process characterizing the
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reaction coefficients, σν1 and σν2 . The plots in the left column show the marginal

distributions obtained with the Krippner series and the right column those obtained

with the Wu-Xia series. While the marginal distributions of π∗ and σ have a reg-

ular shape, the distributions of σν1 appear to have long tails for both shadow rates

series. Furthermore, the distribution of σν2 obtained with the Wu-Xia shadow rate

series is strongly skewed. The long tails in the distributions of σν1 indicate that

there is a positive probability for the response to the expected inflation gap to be

far more volatile than initially expected. Long or heavy tails may postulate an issue

for the sampler as the tail of the distribution requires a relatively large step size to

be efficiently explored by the HMC algorithm while to deal with the higher local

curvature of the posterior density surface in the region where the probability mass is

concentrated a relatively small step size may be appropriate. A relatively large step

size could result in unstable dynamics so that the sampler produces divergent draws

which would invalidate the results while a relatively small step size may lead to a

random walk behaviour. In the optimum, when the likelihood surface does not suffer

from irregularities at all, the HMC algorithm produces nearly uncorrelated sample

draws due to its gradient based approach and ability to cover large distances in the

parameter space. However, in this case the step size was calibrated to be relatively

small due to the high curvature in the central region of the posterior. The correlo-

gramm of the sample draws for the conditional standard deviation of the response to

the expected inflation gap, σν1 , see Figure A.3 in the Appendix, exhibits a relatively

high autocorrelation of the sample draws. This explains the large amount of sample

draws required to achieve an effective sample size of at least 1,000. In this case, this

does not constitute a major issue though, as the trajectories of the four different

chains do not feature any obvious irregularities which would prevent the sampler

from exploring the posterior likelihood surface properly. There is no indication that

the chains would have stuck in a certain region and the scatter plots of σν1 , σν2 and σ

do not show any obvious issues with identification either, such as a ridge, see Figure

A.4 in the Appendix. They indicate, however, a slight bimodality which is more

pronounced in case the Wu-Xia series is used for the estimation. However, this does
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not constitute an issue for the sampler either, as the energy barrier between the two

regions is not as high that it would cause the sampler to stuck in one of the modes.

In general, long tails do not constitute an issue, as the sampling algorithm is feasible

and given the sufficiently high effective sample size, there are no irregularities which

would invalidate the results.9

5. Robustness checks and extensions

No model training. A straightforward question to be asked is how results change

depending on the priors assumed. I estimated the model on the entire data sample

from 1999.2 to 2021.2 directly with the priors from Section 2 without conducting

any training or subsequent adjustments in the priors. Figure 4 shows the results in

comparison to the baseline estimates from Section 4 with priors based on the results

in Table 1. The main difference in both estimates occurs in the estimate for the

Figure 4: Time-varying response from 1999.2 to 2021.2 without model training

(a) Expected Inflation Gap (b) Expected Growth Gap

Notes: Plot (a) shows the estimates for the time-varying response to the expected inflation gap,
θ1,t, and plot (b) to the expected growth gap, θ2,t. The blue and the red lines refer to the results
obtained with the Krippner and with the Wu-Xia shadow rate series, respectively. The solid lines
correspond to the results obtained with the priors from Section 2 and the dashed lines display the
baseline estimates from Section 4 with priors according to the results in Table 1.

response to the expected inflation gap. For both shadow rate series, the response

to the expected inflation gap at the initial point, θ1,0, is markedly lower than in the

baseline estimation. The lower estimate for θ1,0 alters the slope of the trajectory of

9For the detailed Stan output containing the effective sample sizes see Table B.2 and B.3 in the
Appendix.

19



θ1,t, yet the difference to the baseline estimate gradually vanishes until 2008.4. The

lower estimates until 2008.4 are most likely driven by the significantly lower prior

value set for θ1,0, in particular 0.50 instead of 0.90. Consequently, the estimate for

the response at the beginning depends significantly on the prior belief about the

commitment to keep inflation close to the target at the inception of monetary union.

The standard deviation of the estimation is larger though as shown in Table 3. The

Table 3: Priors and posterior estimates without model training – 1999.2-2021.2

Prior Krippner Wu-Xia

Par. Dens. Mean Std Mean Std [0.05, 0.95] Mean Std [0.05, 0.95]

π∗ Norm 1.9 0.15 1.83 0.12 [1.64, 2.04] 1.81 0.11 [1.66, 2.00]
σ InvG 0.2 0.20 0.45 0.038 [0.40, 0.52] 0.39 0.045 [0.32, 0.47]
σν1

InvG 0.2 0.20 0.13 0.067 [0.051, 0.23] 0.13 0.078 [0.054, 0.25]
σν2

InvG 0.2 0.20 0.10 0.038 [0.05, 0.17] 0.18 0.092 [0.067, 0.36]
θ1,0 Norm 0.5 2.00 0.43 0.49 [-0.32, 1.29] 0.56 0.51 [-0.22, 1.44]
θ2,0 Norm 0.5 2.00 0.61 0.29 [0.15, 1.09] 0.67 0.41 [0.042, 1.36]

Notes: The posterior means and standard deviations of the time-invariant parameters as well as
the initial values of the time-varying parameters were estimated on the complete data sample from
1999.2 to 2021.2 without any estimation of the model on a training sample. The corresponding 90
percent credible intervals are displayed in brackets.

estimate for θ1,0 obtained with the baseline setup in Section 4 lies also well within

the 66 percent credible interval of this estimate. The difference between the esti-

mates for θ1,t is negligible from 2008.4 onwards. This implies that for the period

after the financial crisis the data pins down the time-varying parameters fairly well.

This could be attributed to the larger variation in the shadow rate series than in the

MRO. The estimation with respect to the response to the expected growth gap is

very small throughout the entire period for θ2,t. However, there is some slight differ-

ence at the very beginning of the sample if compared with the baseline estimation

results which vanishes very rapidly. Similarly to θ1,0, this is also very likely to be

attributable to the smaller prior assumed for θ2,0, 0.50 against 0.76 in the baseline

setup. As regards the time-invariant parameters, see Table 3, the estimates for the

conditional standard deviations of the random walk innovations, σν1 and σν2 , and

for the inflation target, π∗, are almost similar to those obtained with the baseline

setup from Table 2. The estimates for the standard deviation of the error term in
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the policy rule, σ, are slightly larger than before, 0.45 as opposed to 0.43 and 0.39 to

0.37. Therefore, the variation of the estimated time-varying response to the expected

inflation and growth gap remains similar. As regards the diagnostics, there were no

divergent transitions which would invalidate the results, similarly to the other esti-

mations. However, a very large amount of sample draws is still needed to achieve

an acceptably high effective sample size because of the long tails in the marginal

distributions of σν1 and σν2 .

Less varying response. To assess how results change when less variation is per-

mitted in the reaction coefficients I set a tighter prior distribution along with a lower

expected value for the standard deviations of the innovations, σν1 and σν2 . I assume

that each of the latter two parameters is again inverse gamma distributed, yet with

an expected value of 0.1 and a standard deviation of 0.05 instead of assuming 0.2 for

both the expected value and the standard deviation as in Section 2. The rest of the

priors corresponds to those in Section 2 and in the previous subsection. I estimated

the modified model first by following the baseline procedure, that is, I estimated it on

the training sample from 1999.2 to 2001.4 and then set the obtained results as new

priors to finally rerun the estimation on the complete data sample from 1999.2 to

2021.2. Afterwards I also carried out the estimation using the complete data sample

without training the model on any data sample.

Figure 5 shows that the tighter prior with the lower expected value renders the

reaction coefficients smoother, as expected. A further consequence of the reduced

variation is that the response to the expected inflation gap is initially lower than in

the baseline estimation. Yet, the difference between the curves vanishes. In case the

model is estimated without training, the initial difference is more pronounced owing

to the markedly smaller priors for the starting values, θ1,0 and θ2,0. The difference

in the response to the expected growth gap compared to the baseline results is much

smaller than in case of the expected inflation gap. The response to the expected

growth gap is essentially the same with the Krippner series and is slightly larger

with the Wu-Xia series in the period between 2002 and 2008, whereas at the peak in
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Figure 5: Time-varying response with tight priors from 1999.2 to 2021.2

(a) Expected Inflation Gap (b) Expected Growth Gap

Notes: The blue and the red lines refer to the results obtained with the Krippner and the Wu-Xia
shadow rate series, respectively. The solid lines show the estimates from the tight prior setup, yet
obtained by training the model first on the data sample from 1999.2 to 2001.4, while the dashed
lines refer to the estimates on the complete data sample from 1999.2 to 2021.2 without any model
training. The dotted lines display the baseline estimates from Section 4 for comparison purposes.

2008.4 it is smaller. Afterwards the results do not differ much from those obtained

with the baseline setup. The posterior mean of the inflation target ranges between

1.83 and 1.84 which is slightly higher for the Wu-Xia series while it remains essen-

tially the same for the Krippner series, see Table B.4 and B.5 in the Appendix. The

volatility of the deviation from the policy rule is very slightly higher if compared with

the results from the baseline setup. It is estimated at 0.44 and 0.46 for the Krippner

series and at 0.40 and 0.42 for the Wu-Xia series, compared to 0.43 and 0.37 from

Table 2. This suggests that the volatility in the data translates into higher deviations

from the policy rule. In general, one can conclude that the main difference lies in the

estimates for the response to the expected inflation gap in the initial period. Again,

no issues were signaled by the diagnostics. The effective sample sizes of σν1 and

σν2 improved slightly owing to the shorter tail in the marginal distribution, however

compared with the rest of the parameters it is still very low.

Correlated response. A further canonical extension of the model is to allow for

a cross correlation between the error terms of the time-varying reaction coefficients.

Hence, I release the assumption that Q is diagonal. I will maintain though the as-

sumption that the initial states, θ0, are independently distributed and also indepen-

dent from the rest of the priors. Therefore, I can assume that the prior distribution
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of Q is Inverse-Wishart with ∼ W−1(diag(0.182, 0.162), 4). Thereby, I leave Q rela-

tively unrestricted and let the data decide about the cross-covariances. For the rest

of the priors the results from Table 1 are used. Figure 6 shows that allowing for

cross-correlation changes the evolution of the response to both the expected inflation

gap and growth gap over time only very slightly, compared to the baseline results.

Yet, the estimates suggest a slight positive cross correlation between the innovations

in the reaction coefficients with 0.17 and 0.08 for the Krippner and the Wu-Xia series,

respectively. Using the priors from Section 2 for the rest of the parameters results

in an even lower cross correlation of 0.10 and 0.05 for the two datasets, respectively,

while results remain almost similar to the case where no model training is carried

out. The corresponding results are shown in Figure A.6 in the Appendix.

Figure 6: Correlated time-varying response from 1999.2 to 2021.2

(a) Expected Inflation Gap (b) Expected Growth Gap

Notes: The blue and the red lines refer to the results obtained with the Krippner and with the
Wu-Xia shadow rate series, respectively. The solid lines correspond to the results obtained by
allowing for correlation between the innovations in the random walk processes governing the reaction
coefficients. The dashed lines display the baseline estimates from Section 4 for comparison purposes.

Stochastic volatility. To account for periods of both higher and lower variation

in the deviation from the policy rule I extend the model by assuming stochastic

volatility for the error term in the policy rule, so I postulate the following structure

for the disturbance in the observation equation:

ϵt := γte
st
2 , γt ∼ N(0, 1). (19)

The volatility process, st can be described as follows:
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st = µs + ρs(st−1 − µs) + ψtτs (20)

ψt ∼ N(0, 1), s0 ∼ N

(
µs,

τ 2s
1− ρ2s

)
(21)

where ψt is the shock to the volatility and τs the corresponding scaling parameter.

Combining the equations, the conditional distribution of st is given by

(st|st−1, µs, ρs, τs) ∼ N
(
µs + ρs(st−1 − µs), τ

2
s

)
. (22)

The conditional distribution of ϵt equals to:

(ϵt|sT , µs, ρs, τs) = (ϵt|st, µs, ρs, τs) ∼ N
(
0, υ2t

)
(23)

with υt := e
st
2 . Since I assume that there is no cross correlation between the error

terms of the state space, the likelihood translates to

p(Y T |θ̃T , σν1 , σν2 , µs, ρs, τs, s
T ) =

T∏
t=0

1

(2πυ2t )
1/2

[
exp

{
−(yt − f(Xt, θ̃t))

2

2υ2t

}]
. (24)

In addition, I assume that all parameters determining st are independently dis-

tributed from the rest of the parameters. As a consequence, the joint prior dis-

tribution can be written as

p(θ̃T , σν1 , σν2 , µs, ρs, τs, s
T ) = p(θT |π∗, σν1 , σν2 , µs, ρs, τs, s

T )p(π∗, σν1 , σν2 , µs, ρs, τs, s
T ) =

p(π∗)p(σν1)p(σν2)p(µs, ρs, τs)p(s
T |µs, ρs, τs)p(θ0)

T−1∏
t=0

p(θt+1|θt, σν1 , σν2) =

p(π∗)p(σν1)p(σν2)p(µs)p(ρs)p(τs)p(s0)p(θ0)
T−1∏
t=0

p(st+1|st, µs, ρs, τs)
T−1∏
t=0

p(θt+1|θt, σν1 , σν2).

(25)

To estimate the model I assume that ρs is uniformly distributed in the interval (−1, 1)

and both µs and τs are Cauchy distributed with C(0, 5)10. Figure 7 shows the results

in comparison to those from the baseline estimation. The first main difference is that

10The probability density function of the Cauchy distribution is given by p(x; a, b) = 1

πb
[
1+( x−a

b )
2
] .
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Figure 7: Time-varying response with stochastic volatility from 1999.2 to 2021.2

(a) Expected Inflation Gap (b) Expected Growth Gap

Notes: The blue and the red lines refer to the results obtained with the Krippner and with the
Wu-Xia shadow rate rate series, respectively. The solid lines show the estimates of the time-varying
reaction coefficients assuming stochastic volatility in the deviations from the policy rule. The dashed
lines display the baseline estimates from Section 4 for comparison purposes.

until the beginning of the financial crisis the response to the expected inflation gap

is far more volatile than without modelling stochastic volatility. It decreases until

end-2004 and increases then sharply until mid-2007. Although inflation hovered

around the target until the financial crisis, the response was considerably weaker for

a relatively short period than initially suggested by the baseline model. This finding

is also supported by the response to the expected growth gap which decreases as well

until end-2004 and increases sharply afterwards until the outbreak of the financial

crisis. Given that the policy rate remained constant between 2003.3 and 2005.4

these results are hardly surprising. After the beginning of the financial crisis the

response to the expected inflation gap depends strongly on the data series used. The

estimation based on the Krippner series exhibits the same pattern as in the baseline

estimation. It decreases continuously until the end of the sample period where it

reaches again negative values. In contrast, the results obtained with the Wu-Xia

series indicate that after a relatively moderate decline the response strengthens and

reaches a new peak. However, afterwards it decreases continuously and ends up at

a relatively low level, yet not zero. The pattern of the response to the expected

growth gap following the start of the financial crisis is comparable with that from

the baseline estimation irrespective of the data series used. For the Krippner series

initially it decreases but rebounds then relatively fast and peaks in the second half of
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2012, yet drops to zero in the aftermath. For the Wu-Xia series it declines smoothly

and drops to roughly zero towards the end of the sample.

Figure 8: Posterior estimates of time-varying volatility from 1999.2 to 2021.2

Notes: The blue and the red lines refer to the evolution of the of the volatility in the deviations
from the policy rule obtained with the Krippner and with the Wu-Xia shadow rate rate series,
respectively.

The estimated evolution of the volatility, see Figure 8, suggests that until the

beginning of the financial crisis the deviation from the estimated response tended to

be smaller and less volatile. Allowing for a varying volatility in the deviations from

the policy rule renders the reaction coefficient smaller which provides a better fit. In

contrast, with a constant volatility parameter the larger deviations from the policy

rule following the financial crisis increase the volatility of the deviations uniformly

also for the period before the financial crisis. This results in a more forceful estimated

response along with a larger deviation from the policy rule whereas in reality the

response might have been less forceful and the deviations from it small. Therefore,

it is essential to account for changes in the volatility over time.

In the aftermath of the financial crisis the magnitude of the deviations increased

remarkably as with non-standard measures there is obviously less room for a fine

tuning of the policy rate. These results imply that the central bank may have been

more aggressive for quiet some time after the financial crisis than initially estimated

without assuming changes in the volatility in the deviations from the policy rule over

time. Since the central bank does not have the ability to set policy rates directly,

deviations from the assumed response are larger. Therefore, for the agents in the

economy it will be more difficult to distinguish between an actual change in the

systematic response and a larger deviation from the policy rule. This may render
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policy less efficient, as agents may build expectations relying on inaccurate values

with respect to the strength of the response. A further notable result is that although

technically st was restricted to be stationary, there might be little need to allow for

permanent changes in the magnitude of the deviations from the policy rule as ρs is

estimated at 0.75 and 0.66 for the Krippner and the Wu-Xia series, respectively. This

implies that deviations from the intended policy response occur only on a temporary

basis, typically when the economy is hit by large shocks, for example at the beginning

of the financial crisis or at the outbreak of the recent pandemic.

The diagnostics did not signal any serious issues with sampling. However, the

estimation of the model with the Krippner series resulted in one single diverging sam-

ple draw within overall 200,000 sample draws. This means that in a single case when

the new proposal draw was calculated by applying the numerical solution algorithm

to the Hamiltonian equation it drifted off the Hamiltonian path. Usually this occurs

when the local curvature of the joint posterior is very large for the calibrated step

size. However, in case of this more sophisticated model a single divergent sample

draw can be ignored as the relative amount of divergent sample draws is marginal

if compared with the overall number sample draws. Moreover, the one divergent

sample draw does not exhibit any pattern that would indicate that the algorithm is

unstable in a certain region and therefore the sampler cannot access certain regions

of the joint posterior. To remedy this issue it is recommended to reduce the step

size of the HMC algorithm. However, to achieve this result the step size had to be

reduced further manually by an immense magnitude compared to the automatically

calibrated value by the software package used. This indicates, that the expansion

of the model with stochastic volatility results in a way more complex joint posterior

surface which is more complicated to be sampled from and increases the runtime

immensely.11 Using common non-gradient based sampling methods, as the random

11Without modelling stochastic volatility the runtime is typically less than 5 minutes on a com-
monly available desktop computer equipped with an AMD 3950x CPU. The expansion of the model
with stochastic volatility increased the runtime to 2-3 days in order to obtain 200,000 sample draws
with only one divergent draw. With the Wu-Xia series there were no divergences among the 200,000
sample draws. However, the step size had to be reduced approximately by the same magnitude and
resulted in a very similar runtime as for the estimation with the Krippner series.
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walk Metropolis Hastings algorithm, it is questionable whether sampling would be

tractable at all. Furthermore, without sophisticated diagnostic features unique to

the HMC algorithm it could easily occur that one would not even realize that the

sampler could not access certain parts of the posterior and end up with biased results.

New inflation target. In course of its strategy review in 2021 the ECB has an-

nounced its new symmetric inflation target of 2 percent. Therefore, I assume that

from 2021.3 onwards π∗ equals 2+d percent, where d is assumed to be normally dis-

tributed with d ∼ N(0, 0.12). Given the recent inflation developments and to achieve

a better identification I truncate d at zero and exclude thereby negative values. Re-

defining θ̃T by adding d, the arguments from Section 2 hold, so the joint posterior

can be expanded by the prior distribution of d. I estimated the model first without

assuming stochastic volatility. Figure 9 shows that the response to the expected

Figure 9: Time-varying response from 1999.2 to 2022.3

(a) Expected Inflation Gap (b) Expected Growth Gap

Notes: Plot (a) shows the estimates for the time-varying response to the expected inflation gap,
θ1,t, and plot (b) to the expected growth gap, θ2,t. The blue and the red lines refer to the results
obtained with the Krippner and with the Wu-Xia shadow rate rate series, respectively. The solid
lines refer to the estimates using priors based on Table 1. The dashed lines refer to the estimates
using priors from Section 2. The dashed lines refer to the estimates using priors from Section 2 with
the tight prior setup for the standard deviations of the innovation in the time-varying parameters.

inflation gap is considerably influenced by the recent response to its sharp rise. For

the Krippner series, the estimates in the period until the start of the financial cri-

sis depend again on which initial priors are assumed as in the baseline estimation

until 2021.2. However, if compared with the results from the baseline setup, after

2017 the reaction function does not decrease anymore, but increases again except
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a short interruption between 2019.4 and 2020.1. At the end of the sample period

the response to the expected inflation gap has reached its highest value since 2007.3.

The fact that towards the end of the sample period the estimates are influenced

substantially by the most recent data is inherent in the random walk structure of

the reaction coefficients. In periods when the time-varying parameters are less well

identified or the relationship with the dependent variable might be weak, the values

are influenced considerably by the parameter values in those periods with a better

identification and a stronger relationship with the dependent variable. For the Wu-

Xia series the first main difference is that the model prefers a more volatile response

to the expected inflation gap over time. Moreover, the strong response at the end

of the sample period influences the values significantly from approximately 2012 on-

wards. Following the decrease before the outbreak of the pandemic the response to

the expected inflation gap increases sharply and reaches even more than two times

higher values than before the start of the financial crisis. Setting even tighter priors

for the conditional standard deviation of the reaction coefficients does not alter the

main pattern, yet renders the evolution smoother. As regards the response with

respect to the expected growth gap the evolution is very similar if compared with

the baseline results using data only until 2021.2. Afterwards the response increases

slightly, yet it still remains in relatively low ranges.

In light of the recent rise in both realized and expected inflation a natural ques-

tion to be asked is the whether recently the ECB has become more tolerant against

inflation and to what extend the true inflation target has changed. For the period

until 2021.2 the inflation target with the Krippner series is estimated at 1.82 being

essentially similar to the results from the baseline setup. Using the Wu-Xia series the

target is estimated to be 1.74 percent which is somewhat lower than the baseline es-

timate. As regards the short period following the strategy review, the parameter d is

estimated at 0.08 and 0.06 for the Krippner and the Wu-Xia series, respectively. This

suggests that the inflation target is estimated at very slightly above the symmetric

2 percent target.

The model was also reestimated with the stochastic volatility setup from above.
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Figure 10: Time-varying response with stochastic volatility from 1999.2 to 2022.3

(a) Expected Inflation Gap (b) Expected Growth Gap

Notes: Posterior estimates of the time-varying reaction coefficients assuming stochastic volatility
in the deviations from the policy rule. The blue and the red lines refer to the results obtained with
the Krippner and with the Wu-Xia shadow rate rate series, respectively.

Figure 10 suggests that with the Krippner series the response to the expected inflation

gap exhibits a continuously falling tendency from the beginning of 2014 and reaches

the trough only in 2020.1, while without stochastic volatility it appears to have been

increasing gradually since 2017. In addition, from 2020.2 the increase is steeper and

ends up at 0.48 at the end of the sample period being higher than the estimated

value of 0.38 without modelling stochastic volatility. For the Wu-Xia series, the

stochastic volatility setup renders the evolution of the response to the inflation gap

relatively smooth. Moreover, the increase from 2020.2 is far less steep than without

assuming stochastic volatility. It is also considerably lower even if compared with

the case from Figure 9 where tight priors are used for the standard deviation of the

innovations to prevent the time-varying reaction process from sudden fluctuations.

Nevertheless, the response reaches its highest value ever at the end of the sample

period. As regards the response to the expected growth gap, using the Krippner series

it is slightly more volatile which results in turn in a slightly higher response towards

the end of the sample period than without modelling stochastic volatility. For the

Wu-Xia series the response is far less volatile than without stochastic volatility and

notably lower at the end of the sample period.

Finally, the estimation results for the volatility suggest that for the Krippner

series the deviations from the policy rule have fallen back to levels prevailing before

the financial crisis following the immense pandemic shock. The results with respect
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Figure 11: Posterior estimates of time-varying volatility from 1999.2 to 2022.3

Notes: The blue and the red lines refer to the evolution of the of the volatility in the deviations
from the policy rule obtained with the Krippner and with the Wu-Xia shadow rate rate series,
respectively.

to the Wu-Xia series suggest though that the volatility has kept rising and reached

its highest levels ever. As regards the persistence of the changes in the magnitude

of the volatility in the deviations from the policy rule, for the Krippner series ρs

is slightly lower with 0.73 than the estimate without considering the post strategic

review period. In contrast, for the Wu-Xia series it increases from 0.66 to 0.80.

The latter result suggests, that deviations from the policy rule may have become

recently longer lasting. Thus, monetary policy may remain more aggressive than the

policy rule would suggest. In the future this could translate in a higher estimated

systematic response.

6. Conclusion

In order to assess the changes in the monetary policy stance of the euro area

since its inception I estimated a monetary policy function, which has been shown to

adequately describe the ECB’s policy response (see e.g. OW, BW and HS). To that

end, I developed a Bayesian time-varying parameter framework and sampled from

the joint posterior distribution of the parameters by using the Hamiltonian Monte

Carlo algorithm. I also improved on existing studies by relying on two different

shadow interest-rate series instead of key policy rates. That permitted to estimate

the impact of non-conventional measures on the ECB’s reaction function directly

during periods when monetary policy may have been constrained by the effective

lower bound. In addition, this flexible framework allowed for a more sophisticated
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modelling of the stochastic volatility associated with deviations from the policy rule.

I found that the ECB’s response to the expected inflation gap and the expected

growth gap has varied considerably over time. While the response to the expected

growth gap has weakened substantially in the aftermath of the financial crisis, the

estimation results for the response to the expected inflation gap are somewhat mixed

and depend on the shadow rate series used for estimation purposes. In particular,

the majority of the results suggests that the response weakened since the onset of

the financial crisis and when quantitative measures were in place. There are also

indications, however, that this weakening in the response to expected inflation was

less pronounced.

If the period following the ECB’s strategy review is also included into the data

sample used for the estimation, the results imply that the ECB’s response has re-

cently become more forceful. However, while the results obtained with Krippner’s

shadow rate series suggest that the response to the expected inflation gap remains

well below its historical peak, the results obtained by using the alternative shadow

rate series provided by Wu and Xia show that it recently achieved its highest level

ever. The estimation results obtained with the extended data sample including the

post-strategy review period also indicate that the response to the expected inflation

gap weakened much less during the years prior to the pandemic, especially if the

model is estimated with the Wu-Xia shadow rate series. This feature is inherent in

the model because periods of weak responses, or which may be less well identified by

the data, are strongly affected by subsequent peaks in the response. This may make

the estimated policy response more forceful during periods when the response was

indeed weak. I also found that the inflation target rose to slightly above 2 percent

as a result of the ECB’s recent strategy review. Consequently, the results do not

suggest much greater tolerance of a large deviation from the new target.

Factoring stochastic volatility into deviations from the policy rule over time is

essential as it strongly influences the estimation results. Firstly, results suggest

that the policy response in the run-up to the financial crisis was more volatile than

that suggested by the baseline estimation setup. It declined significantly from its
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initially high levels until 2005 but then rebounded sharply. Secondly, the response

to the expected inflation gap after the financial crisis was more forceful than it

would have been without modelling stochastic volatility. Thirdly, the response to the

expected inflation gap declined more sharply after quantitative easing was introduced

in 2015.1. And, lastly, the recent increase in the response to the sharp rise in the

expected inflation gap is much smaller, especially when the Wu-Xia shadow rate

series is used for estimation, while with the Krippner series it is only slightly higher.

Given the importance of both the time variability of the response parameters and

the stochastic volatility in the deviations from the policy rule, it is essential to take

account of both when investigating possible changes in the stance of monetary pol-

icy. The HMC algorithm is a suitable approach for dealing with extremely complex

and very high-dimensional models. Consequently, extensions of the present model

in terms of its statistical and structural properties are easily possible to improve

accuracy and structural interpretation. I leave these topics for future research.
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Appendix A. Figures

Figure A.1: Posterior estimates of time-varying reaction coefficients

Krippner

(a) Expected Inflation Gap (b) Expected Growth Gap

Wu-Xia

(c) Expected Inflation Gap (d) Expected Growth Gap

Notes: Plot (a) and (b): estimation results obtained with the Krippner shadow rate series. Plot (c)
and (d): estimation results obtained with the Wu-Xia shadow rate series. The solid lines refer to the
estimation on the complete data sample from 1999.2 to 2021.2 and dashed lines to the sample from
2002.1 to 2021.2. The grey shaded area and the dotted lines show the 90 percent credible intervals
with respect to the estimation from 1999.2 to 2021.2 and from 2002.1 to 2021.2, respectively.
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Figure A.2: HMC energy diagnostics

(a) Krippner

(b) Wu-Xia

Notes: The figure shows the overlaid histograms of the (centered) marginal energy distribution and
the first-differenced distribution which is referred to as the energy diagnostics. Plot (a) displays
the diagnostics of each chain obtained with the Krippner shadow rate series while plot (b) shows
the diagnostics of each chain obtained with the Wu-Xia shadow rate series. The estimation was
carried out with data covering the period from 1999.2 to 2021.2.
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Figure A.3: Correlogramms of time-invariant parameter sample draws

π∗

Krippner Wu-Xia

σ

σν1

σν2

Notes: The plot shows correlogramms of the sample draws for the time-invariant parameters. The
left and the right column contain the results obtained with the Krippner shadow rate series and
with the Wu-Xia shadow rate series, respectively. Estimation period: 1999.2-2021.2.
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Figure A.4: Scatter plots of sample draws of standard deviations

σν2

Krippner

σν1

σν2

Wu-Xia

σν1

σ

σν1

σ

σν1

σ

σν1

σ

σν1

Notes: Sample draws of the standard deviations of the random walk innovations, σν1
and σν2

, and
the standard deviation of the error term in the policy rule, σ.
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Figure A.5: Posterior distributions of time-invariant parameters – 2002.1-2021.2

π∗

Krippner Wu-Xia

σ

σν1

σν2

Notes: Posterior distributions estimates of the time-invariant parameters: inflation target, π∗,
standard deviation of the error term in the policy rule policy rule, σ, standard deviations of the
innovations in the processes governing the time-varying reaction coefficients, σν1 and σν2 . Priors
are set according to the results from Table 1. Estimation period: 2002.1–2021.2.
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Figure A.6: Correlated time-varying response without model training from 1999.2
to 2021.2

(a) Expected Inflation Gap (b) Expected Growth Gap

Notes: The blue and the red lines refer to the results obtained with the Krippner and with the
Wu-Xia shadow rate series, respectively. The solid lines correspond to the results obtained by
allowing for correlation between the innovations of the random walk processes governing the reaction
coefficients without any model training. The dashed lines display the baseline setup without any
model training from Section 5 for comparison purposes.

42



Appendix B. Tables

Table B.1: Posterior estimates for the time period from 2002.1 to 2021.2

Krippner Wu-Xia

Param. Density Mean Std [0.05, 0.95] Mean Std [0.05, 0.95]

π∗ Normal 1.82 0.098 [1.66,1.98] 1.80 0.088 [1.67,1.95]
σ InvGamma 0.45 0.038 [0.39,0.52] 0.39 0.046 [0.31,0.46]
σν1

InvGamma 0.12 0.070 [0.057,0.25] 0.13 0.082 [0.058,0.26]
σν2 InvGamma 0.11 0.039 [0.059,0.18] 0.20 0.097 [0.078,0.38]
θ1,0 Normal 0.52 0.40 [-0.11,1.21] 0.59 0.40 [-0.058,1.26]
θ2,0 Normal 0.61 0.18 [0.31,0.92] 0.62 0.19 [0.30,0.94]

Notes: Posterior estimates of the time-invariant parameters and the initial values of the time-
varying reaction coefficients for the period from 2002.1 to 2021.2. Priors are set according to the
results in Table 1.

Table B.2: Posterior estimates – Krippner shadow rate series

Param. Rhat Neff Mean Std 2.5% 25% 50% 75% 97.5%

π∗ 1.0000 177129 1.8268 0.0903 1.6572 1.7660 1.8234 1.8843 2.0142

σ 1.0001 32882 0.4331 0.0352 0.3682 0.4093 0.4317 0.4554 0.5063

σν1
1.0010 2504 0.1268 0.0796 0.0511 0.0816 0.1071 0.1461 0.3239

σν2
1.0005 6173 0.1010 0.0350 0.0523 0.0762 0.0946 0.1185 0.1868

θ1,1999.2 1.0001 37739 0.6567 0.3770 -0.0449 0.3973 0.6437 0.9015 1.4329

θ1,1999.3 1.0001 52780 0.6358 0.3809 -0.0738 0.3759 0.6218 0.8807 1.4205

θ1,1999.4 1.0001 64063 0.6181 0.3885 -0.1054 0.3565 0.6032 0.8651 1.4207

θ1,2000.1 1.0001 61360 0.6114 0.3992 -0.1276 0.3449 0.5949 0.8603 1.4394

θ1,2000.2 1.0001 60528 0.6025 0.4088 -0.1533 0.3323 0.5859 0.8543 1.4501

θ1,2000.3 1.0002 62000 0.5936 0.4157 -0.1740 0.3214 0.5760 0.8458 1.4596

θ1,2000.4 1.0001 62700 0.5842 0.4209 -0.1939 0.3105 0.5655 0.8379 1.4632

θ1,2001.1 1.0001 61544 0.5755 0.4240 -0.2066 0.3008 0.5557 0.8305 1.4625

θ1,2001.2 1.0001 60632 0.5653 0.4291 -0.2273 0.2888 0.5460 0.8205 1.4632

θ1,2001.3 1.0001 63907 0.5541 0.4325 -0.2455 0.2762 0.5355 0.8106 1.4511

θ1,2001.4 1.0001 62250 0.5447 0.4330 -0.2533 0.2668 0.5256 0.8019 1.4459

θ1,2002.1 1.0001 74195 0.5253 0.4337 -0.2833 0.2493 0.5096 0.7847 1.4237

θ1,2002.2 1.0001 78044 0.5099 0.4338 -0.3064 0.2347 0.4957 0.7705 1.4042

θ1,2002.3 1.0001 78458 0.4957 0.4339 -0.3243 0.2232 0.4828 0.7570 1.3874

θ1,2002.4 1.0001 78093 0.4809 0.4329 -0.3454 0.2102 0.4691 0.7424 1.3638
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θ1,2003.1 1.0001 79540 0.4670 0.4288 -0.3577 0.1976 0.4575 0.7277 1.3407

θ1,2003.2 1.0001 75129 0.4517 0.4241 -0.3705 0.1861 0.4441 0.7114 1.3099

θ1,2003.3 1.0001 77333 0.4431 0.4190 -0.3726 0.1790 0.4362 0.7015 1.2924

θ1,2003.4 1.0001 74488 0.4327 0.4211 -0.3865 0.1712 0.4257 0.6905 1.2848

θ1,2004.1 1.0001 76178 0.4275 0.4209 -0.3926 0.1655 0.4208 0.6837 1.2813

θ1,2004.2 1.0001 79934 0.4238 0.4211 -0.3909 0.1632 0.4156 0.6797 1.2788

θ1,2004.3 1.0001 79640 0.4205 0.4208 -0.3920 0.1609 0.4119 0.6741 1.2730

θ1,2004.4 1.0001 80903 0.4172 0.4190 -0.3900 0.1584 0.4089 0.6691 1.2666

θ1,2005.1 1.0001 81104 0.4142 0.4158 -0.3862 0.1573 0.4054 0.6633 1.2579

θ1,2005.2 1.0001 80050 0.4131 0.4120 -0.3753 0.1578 0.4036 0.6594 1.2539

θ1,2005.3 1.0001 80023 0.4115 0.4065 -0.3648 0.1582 0.4016 0.6537 1.2435

θ1,2005.4 1.0001 74776 0.4113 0.3990 -0.3479 0.1606 0.4011 0.6505 1.2323

θ1,2006.1 1.0001 59257 0.4119 0.3903 -0.3313 0.1645 0.3991 0.6464 1.2180

θ1,2006.2 1.0001 46531 0.4113 0.3793 -0.3078 0.1690 0.3988 0.6403 1.2036

θ1,2006.3 1.0001 31865 0.4136 0.3774 -0.2964 0.1729 0.3977 0.6369 1.2067

θ1,2006.4 1.0001 30288 0.4052 0.3725 -0.2903 0.1687 0.3899 0.6248 1.1869

θ1,2007.1 1.0001 28268 0.3944 0.3685 -0.2916 0.1607 0.3789 0.6106 1.1673

θ1,2007.2 1.0001 30300 0.3786 0.3625 -0.2962 0.1487 0.3647 0.5899 1.1351

θ1,2007.3 1.0001 33753 0.3607 0.3544 -0.3012 0.1376 0.3480 0.5673 1.0939

θ1,2007.4 1.0001 40023 0.3406 0.3429 -0.3018 0.1231 0.3305 0.5437 1.0462

θ1,2008.1 1.0000 43653 0.3215 0.3315 -0.3075 0.1107 0.3138 0.5204 0.9970

θ1,2008.2 1.0000 49818 0.3017 0.3163 -0.3034 0.0986 0.2958 0.4955 0.9426

θ1,2008.3 1.0000 74209 0.2749 0.2996 -0.3111 0.0809 0.2717 0.4650 0.8765

θ1,2008.4 1.0001 60526 0.2228 0.3026 -0.3910 0.0365 0.2292 0.4176 0.8004

θ1,2009.1 1.0001 30721 0.1916 0.3038 -0.4338 0.0108 0.2026 0.3879 0.7550

θ1,2009.2 1.0002 14661 0.1525 0.3099 -0.4973 -0.0236 0.1696 0.3523 0.7038

θ1,2009.3 1.0001 23283 0.1562 0.2897 -0.4526 -0.0197 0.1683 0.3474 0.6934

θ1,2009.4 1.0000 69869 0.1779 0.2780 -0.3903 0.0018 0.1840 0.3608 0.7109

θ1,2010.1 1.0000 90803 0.1902 0.2823 -0.3824 0.0117 0.1944 0.3727 0.7372

θ1,2010.2 1.0000 94548 0.1930 0.2908 -0.3935 0.0112 0.1963 0.3781 0.7576

θ1,2010.3 1.0000 97785 0.1824 0.2992 -0.4319 -0.0011 0.1888 0.3733 0.7579

θ1,2010.4 1.0000 73422 0.1757 0.3113 -0.4689 -0.0103 0.1838 0.3729 0.7676

θ1,2011.1 1.0000 79970 0.1809 0.3225 -0.4835 -0.0085 0.1891 0.3813 0.7949

θ1,2011.2 1.0000 87274 0.1867 0.3310 -0.4915 -0.0054 0.1941 0.3892 0.8181

θ1,2011.3 1.0000 78210 0.1901 0.3393 -0.5057 -0.0029 0.1981 0.3955 0.8362

θ1,2011.4 1.0000 109455 0.2070 0.3392 -0.4754 0.0096 0.2106 0.4084 0.8724
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θ1,2012.1 1.0000 106654 0.2187 0.3427 -0.4585 0.0175 0.2187 0.4187 0.9008

θ1,2012.2 1.0000 105884 0.2215 0.3430 -0.4536 0.0191 0.2205 0.4202 0.9077

θ1,2012.3 1.0000 106166 0.2245 0.3402 -0.4426 0.0227 0.2225 0.4231 0.9054

θ1,2012.4 1.0000 103971 0.2246 0.3347 -0.4323 0.0245 0.2215 0.4219 0.8982

θ1,2013.1 1.0000 104175 0.2269 0.3267 -0.4115 0.0300 0.2228 0.4200 0.8862

θ1,2013.2 1.0000 64795 0.2382 0.3181 -0.3740 0.0422 0.2308 0.4258 0.8939

θ1,2013.3 1.0000 99362 0.2249 0.3065 -0.3761 0.0356 0.2218 0.4103 0.8438

θ1,2013.4 1.0000 38492 0.2475 0.3037 -0.3245 0.0553 0.2376 0.4256 0.8811

θ1,2014.1 1.0000 31247 0.2510 0.2957 -0.3042 0.0628 0.2406 0.4250 0.8719

θ1,2014.2 1.0000 34851 0.2435 0.2840 -0.2943 0.0608 0.2348 0.4142 0.8370

θ1,2014.3 1.0001 32649 0.2338 0.2743 -0.2852 0.0569 0.2253 0.4002 0.8031

θ1,2014.4 1.0001 78084 0.1988 0.2581 -0.3058 0.0313 0.1954 0.3631 0.7210

θ1,2015.1 1.0001 93561 0.1588 0.2508 -0.3439 -0.0030 0.1601 0.3224 0.6513

θ1,2015.2 1.0001 40345 0.1314 0.2662 -0.4187 -0.0303 0.1369 0.3028 0.6402

θ1,2015.3 1.0000 37740 0.2003 0.2735 -0.3194 0.0258 0.1926 0.3656 0.7635

θ1,2015.4 1.0001 17871 0.2316 0.2843 -0.2871 0.0493 0.2171 0.3955 0.8384

θ1,2016.1 1.0001 19929 0.2230 0.2806 -0.2947 0.0412 0.2099 0.3886 0.8188

θ1,2016.2 1.0000 62638 0.1779 0.2650 -0.3328 0.0048 0.1730 0.3436 0.7209

θ1,2016.3 1.0000 62593 0.1532 0.2658 -0.3642 -0.0192 0.1493 0.3202 0.6926

θ1,2016.4 1.0001 22540 0.0689 0.2850 -0.5286 -0.1004 0.0802 0.2524 0.5987

θ1,2017.1 1.0001 25549 0.0560 0.2951 -0.5666 -0.1180 0.0683 0.2455 0.6035

θ1,2017.2 1.0000 40306 0.0612 0.2995 -0.5660 -0.1157 0.0712 0.2519 0.6240

θ1,2017.3 1.0000 87358 0.0764 0.3020 -0.5419 -0.1063 0.0809 0.2663 0.6583

θ1,2017.4 1.0000 101482 0.0838 0.3069 -0.5338 -0.1029 0.0866 0.2745 0.6809

θ1,2018.1 1.0000 101244 0.0811 0.3128 -0.5507 -0.1068 0.0838 0.2747 0.6900

θ1,2018.2 1.0000 89478 0.1056 0.3143 -0.5062 -0.0878 0.1016 0.2936 0.7369

θ1,2018.3 1.0000 44096 0.1237 0.3190 -0.4802 -0.0743 0.1161 0.3098 0.7772

θ1,2018.4 1.0001 30090 0.1356 0.3216 -0.4602 -0.0644 0.1245 0.3180 0.8056

θ1,2019.1 1.0001 16835 0.1519 0.3266 -0.4333 -0.0512 0.1355 0.3302 0.8418

θ1,2019.2 1.0002 13141 0.1568 0.3274 -0.4210 -0.0470 0.1377 0.3331 0.8526

θ1,2019.3 1.0002 11100 0.1526 0.3255 -0.4160 -0.0492 0.1339 0.3251 0.8355

θ1,2019.4 1.0000 96088 0.0465 0.2818 -0.5212 -0.1323 0.0503 0.2279 0.5969

θ1,2020.1 1.0001 30377 0.0008 0.2916 -0.5994 -0.1781 0.0091 0.1903 0.5537

θ1,2020.2 1.0000 54261 -0.0017 0.2911 -0.5963 -0.1855 0.0041 0.1881 0.5577

θ1,2020.3 1.0000 64106 -0.0084 0.2962 -0.6144 -0.1961 -0.0035 0.1859 0.5647

θ1,2020.4 1.0000 51970 -0.0228 0.3219 -0.6900 -0.2217 -0.0137 0.1874 0.5855
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θ1,2021.1 1.0001 29772 -0.0465 0.3480 -0.7848 -0.2548 -0.0317 0.1808 0.6008

θ1,2021.2 1.0001 31254 -0.0510 0.3743 -0.8482 -0.2701 -0.0340 0.1903 0.6377

θ2,1999.2 1.0000 146229 0.7111 0.1741 0.3743 0.5933 0.7097 0.8269 1.0582

θ2,1999.3 1.0000 144693 0.7035 0.1817 0.3528 0.5813 0.7009 0.8230 1.0681

θ2,1999.4 1.0000 138541 0.6956 0.1832 0.3418 0.5728 0.6930 0.8151 1.0648

θ2,2000.1 1.0000 158879 0.6777 0.1820 0.3247 0.5564 0.6755 0.7965 1.0424

θ2,2000.2 1.0000 164822 0.6638 0.1798 0.3142 0.5438 0.6625 0.7820 1.0204

θ2,2000.3 1.0000 168282 0.6497 0.1802 0.2980 0.5300 0.6488 0.7685 1.0079

θ2,2000.4 1.0000 165101 0.6430 0.1867 0.2778 0.5198 0.6420 0.7654 1.0143

θ2,2001.1 1.0000 162927 0.6334 0.1932 0.2549 0.5068 0.6322 0.7593 1.0182

θ2,2001.2 1.0000 158466 0.6258 0.1965 0.2400 0.4972 0.6249 0.7530 1.0175

θ2,2001.3 1.0000 156512 0.6176 0.1953 0.2346 0.4894 0.6169 0.7442 1.0069

θ2,2001.4 1.0000 146542 0.6173 0.1921 0.2434 0.4899 0.6151 0.7428 1.0023

θ2,2002.1 1.0000 146512 0.5857 0.2006 0.1898 0.4541 0.5855 0.7169 0.9832

θ2,2002.2 1.0000 138855 0.5660 0.2100 0.1453 0.4301 0.5675 0.7030 0.9772

θ2,2002.3 1.0000 127120 0.5470 0.2160 0.1095 0.4091 0.5499 0.6877 0.9683

θ2,2002.4 1.0000 116133 0.5307 0.2193 0.0855 0.3902 0.5339 0.6742 0.9567

θ2,2003.1 1.0000 115133 0.5222 0.2225 0.0713 0.3795 0.5250 0.6685 0.9555

θ2,2003.2 1.0001 102986 0.5067 0.2267 0.0456 0.3619 0.5104 0.6557 0.9449

θ2,2003.3 1.0001 98950 0.4999 0.2333 0.0264 0.3514 0.5042 0.6527 0.9514

θ2,2003.4 1.0000 97741 0.4920 0.2447 -0.0084 0.3380 0.4969 0.6514 0.9655

θ2,2004.1 1.0000 98318 0.4885 0.2546 -0.0338 0.3304 0.4929 0.6528 0.9819

θ2,2004.2 1.0000 103340 0.4852 0.2617 -0.0535 0.3243 0.4900 0.6533 0.9921

θ2,2004.3 1.0001 105101 0.4819 0.2676 -0.0694 0.3169 0.4869 0.6528 1.0021

θ2,2004.4 1.0000 103642 0.4787 0.2718 -0.0772 0.3119 0.4833 0.6514 1.0081

θ2,2005.1 1.0000 103703 0.4750 0.2746 -0.0864 0.3062 0.4796 0.6482 1.0107

θ2,2005.2 1.0000 104344 0.4717 0.2756 -0.0911 0.3029 0.4748 0.6452 1.0113

θ2,2005.3 1.0000 106964 0.4685 0.2753 -0.0910 0.2995 0.4709 0.6417 1.0125

θ2,2005.4 1.0000 107753 0.4665 0.2738 -0.0911 0.2982 0.4681 0.6386 1.0071

θ2,2006.1 1.0000 110993 0.4643 0.2710 -0.0849 0.2976 0.4653 0.6338 1.0019

θ2,2006.2 1.0000 113264 0.4625 0.2670 -0.0771 0.2978 0.4629 0.6292 0.9951

θ2,2006.3 1.0000 113697 0.4616 0.2628 -0.0665 0.2992 0.4608 0.6245 0.9876

θ2,2006.4 1.0000 116186 0.4602 0.2567 -0.0528 0.3006 0.4595 0.6195 0.9744

θ2,2007.1 1.0000 119459 0.4585 0.2486 -0.0355 0.3031 0.4569 0.6128 0.9597

θ2,2007.2 1.0000 120184 0.4592 0.2392 -0.0153 0.3084 0.4570 0.6074 0.9430

θ2,2007.3 1.0000 114385 0.4601 0.2276 0.0139 0.3162 0.4567 0.6004 0.9237
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θ2,2007.4 1.0000 106835 0.4594 0.2142 0.0436 0.3225 0.4547 0.5920 0.8984

θ2,2008.1 1.0000 96075 0.4585 0.1979 0.0777 0.3308 0.4535 0.5813 0.8656

θ2,2008.2 1.0000 75313 0.4589 0.1784 0.1195 0.3415 0.4537 0.5706 0.8287

θ2,2008.3 1.0000 50576 0.4677 0.1596 0.1706 0.3604 0.4613 0.5677 0.8004

θ2,2008.4 1.0000 23777 0.4939 0.1468 0.2272 0.3944 0.4852 0.5847 0.8068

θ2,2009.1 1.0000 60638 0.4027 0.1153 0.1800 0.3254 0.4014 0.4787 0.6339

θ2,2009.2 1.0001 38197 0.2898 0.1214 0.0439 0.2105 0.2920 0.3715 0.5226

θ2,2009.3 1.0001 42880 0.2631 0.1450 -0.0388 0.1721 0.2683 0.3602 0.5349

θ2,2009.4 1.0000 60897 0.2549 0.1622 -0.0843 0.1543 0.2603 0.3628 0.5598

θ2,2010.1 1.0000 74563 0.2476 0.1750 -0.1173 0.1389 0.2533 0.3632 0.5782

θ2,2010.2 1.0001 90128 0.2448 0.1829 -0.1324 0.1302 0.2498 0.3647 0.5939

θ2,2010.3 1.0000 120277 0.2507 0.1904 -0.1376 0.1302 0.2539 0.3751 0.6180

θ2,2010.4 1.0000 136965 0.2537 0.1962 -0.1428 0.1287 0.2555 0.3812 0.6379

θ2,2011.1 1.0000 135338 0.2464 0.2010 -0.1565 0.1180 0.2478 0.3773 0.6399

θ2,2011.2 1.0000 132815 0.2359 0.2035 -0.1722 0.1046 0.2381 0.3682 0.6341

θ2,2011.3 1.0000 125380 0.2196 0.2066 -0.1977 0.0876 0.2225 0.3544 0.6226

θ2,2011.4 1.0000 138222 0.2326 0.2108 -0.1885 0.0966 0.2329 0.3696 0.6511

θ2,2012.1 1.0000 126169 0.2427 0.2132 -0.1761 0.1040 0.2414 0.3803 0.6703

θ2,2012.2 1.0000 119926 0.2352 0.2187 -0.1934 0.0928 0.2337 0.3754 0.6758

θ2,2012.3 1.0000 117566 0.2221 0.2223 -0.2160 0.0778 0.2214 0.3649 0.6668

θ2,2012.4 1.0000 115157 0.2017 0.2282 -0.2516 0.0551 0.2020 0.3485 0.6550

θ2,2013.1 1.0000 109163 0.1768 0.2330 -0.2902 0.0274 0.1784 0.3280 0.6342

θ2,2013.2 1.0000 98911 0.1672 0.2376 -0.3115 0.0154 0.1691 0.3208 0.6338

θ2,2013.3 1.0000 94712 0.1548 0.2397 -0.3273 0.0018 0.1564 0.3098 0.6257

θ2,2013.4 1.0000 82154 0.1296 0.2410 -0.3603 -0.0233 0.1335 0.2869 0.5971

θ2,2014.1 1.0000 74585 0.1178 0.2411 -0.3739 -0.0346 0.1216 0.2750 0.5846

θ2,2014.2 1.0000 75964 0.1134 0.2422 -0.3773 -0.0398 0.1173 0.2699 0.5849

θ2,2014.3 1.0000 77504 0.1124 0.2434 -0.3819 -0.0414 0.1160 0.2697 0.5861

θ2,2014.4 1.0000 84143 0.1247 0.2435 -0.3630 -0.0306 0.1261 0.2813 0.6037

θ2,2015.1 1.0000 84761 0.1394 0.2413 -0.3364 -0.0159 0.1377 0.2930 0.6227

θ2,2015.2 1.0000 80200 0.1480 0.2354 -0.3115 -0.0054 0.1452 0.2979 0.6231

θ2,2015.3 1.0000 77781 0.0929 0.2327 -0.3760 -0.0560 0.0957 0.2445 0.5476

θ2,2015.4 1.0001 63972 0.0673 0.2363 -0.4161 -0.0819 0.0723 0.2218 0.5222

θ2,2016.1 1.0001 70787 0.0712 0.2391 -0.4166 -0.0795 0.0757 0.2268 0.5361

θ2,2016.2 1.0000 88653 0.0977 0.2402 -0.3839 -0.0546 0.0992 0.2509 0.5743

θ2,2016.3 1.0000 95125 0.1174 0.2413 -0.3590 -0.0366 0.1163 0.2691 0.6058

47



θ2,2016.4 1.0000 83374 0.1500 0.2415 -0.3129 -0.0071 0.1441 0.2995 0.6516

θ2,2017.1 1.0000 72081 0.1622 0.2377 -0.2885 0.0068 0.1543 0.3085 0.6606

θ2,2017.2 1.0000 71811 0.1642 0.2310 -0.2736 0.0129 0.1566 0.3070 0.6496

θ2,2017.3 1.0000 74840 0.1575 0.2223 -0.2658 0.0118 0.1509 0.2954 0.6208

θ2,2017.4 1.0000 73433 0.1567 0.2146 -0.2513 0.0152 0.1502 0.2897 0.6052

θ2,2018.1 1.0000 58324 0.1652 0.2105 -0.2298 0.0252 0.1569 0.2949 0.6091

θ2,2018.2 1.0000 83011 0.1358 0.2037 -0.2516 0.0023 0.1296 0.2630 0.5598

θ2,2018.3 1.0000 102143 0.1160 0.2025 -0.2735 -0.0145 0.1102 0.2414 0.5367

θ2,2018.4 1.0000 116612 0.1029 0.2001 -0.2804 -0.0259 0.0980 0.2258 0.5210

θ2,2019.1 1.0000 133434 0.0865 0.1958 -0.2915 -0.0381 0.0817 0.2055 0.4917

θ2,2019.2 1.0000 150393 0.0695 0.1872 -0.2949 -0.0485 0.0655 0.1831 0.4560

θ2,2019.3 1.0000 178870 0.0484 0.1746 -0.2970 -0.0602 0.0463 0.1554 0.4034

θ2,2019.4 1.0000 171428 0.0146 0.1569 -0.3054 -0.0811 0.0161 0.1129 0.3231

θ2,2020.1 1.0000 156466 0.0009 0.1312 -0.2680 -0.0795 0.0033 0.0842 0.2567

θ2,2020.2 1.0000 152337 -0.0009 0.0879 -0.1759 -0.0583 -0.0005 0.0567 0.1724

θ2,2020.3 1.0000 232644 -0.0061 0.0858 -0.1795 -0.0597 -0.0054 0.0482 0.1628

θ2,2020.4 1.0000 151244 -0.0138 0.0390 -0.0908 -0.0398 -0.0136 0.0124 0.0625

θ2,2021.1 1.0000 71996 0.0398 0.0925 -0.1336 -0.0211 0.0362 0.0968 0.2347

θ2,2021.2 1.0000 82664 0.0547 0.1004 -0.1382 -0.0122 0.0528 0.1196 0.2587

Notes: Posterior estimates of the time-invariant and the time-varying parameters obtained with the
shadow rate series of Krippner for the period from 1999.2 to 2021.2. Priors are set according to the
results in Table 1. θ1,1999.2 and θ2,1999.2 correspond to θ1,0 and θ2,0, respectively. Neff stands for
the effective sample size. Calculations carried out with ShinyStan.

Table B.3: Posterior estimates – Wu-Xia shadow rate series

Param. Rhat Neff Mean Std 2.5% 25% 50% 75% 97.5%

π∗ 1.0000 106351 1.8134 0.0809 1.6646 1.7594 1.8088 1.8625 1.9871

σ 1.0008 7909 0.3739 0.0417 0.2925 0.3472 0.3747 0.4015 0.4536

σν1
1.0021 2429 0.1352 0.0928 0.0522 0.0862 0.1153 0.1569 0.3213

σν2 1.0013 3646 0.1779 0.0841 0.0661 0.1125 0.1598 0.2279 0.3768

θ1,1999.2 1.0001 37181 0.7320 0.3736 0.0250 0.4759 0.7225 0.9769 1.4921

θ1,1999.3 1.0001 48261 0.7089 0.3790 -0.0061 0.4513 0.6998 0.9555 1.4823

θ1,1999.4 1.0001 45917 0.6906 0.3897 -0.0459 0.4297 0.6812 0.9418 1.4823

θ1,2000.1 1.0001 50524 0.6879 0.4016 -0.0685 0.4209 0.6769 0.9429 1.5082

θ1,2000.2 1.0001 50198 0.6805 0.4145 -0.0957 0.4078 0.6682 0.9400 1.5257

θ1,2000.3 1.0000 49685 0.6733 0.4240 -0.1174 0.3969 0.6600 0.9352 1.5415
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θ1,2000.4 1.0000 48523 0.6666 0.4285 -0.1337 0.3880 0.6525 0.9304 1.5487

θ1,2001.1 1.0000 45267 0.6613 0.4310 -0.1419 0.3786 0.6454 0.9249 1.5540

θ1,2001.2 1.0001 42741 0.6539 0.4386 -0.1634 0.3694 0.6364 0.9199 1.5586

θ1,2001.3 1.0001 43181 0.6443 0.4448 -0.1818 0.3588 0.6274 0.9110 1.5616

θ1,2001.4 1.0001 36498 0.6378 0.4488 -0.1950 0.3506 0.6203 0.9042 1.5632

θ1,2002.1 1.0001 47023 0.6144 0.4494 -0.2322 0.3312 0.6016 0.8847 1.5353

θ1,2002.2 1.0001 47843 0.5993 0.4501 -0.2565 0.3180 0.5885 0.8725 1.5139

θ1,2002.3 1.0001 45666 0.5865 0.4491 -0.2724 0.3048 0.5771 0.8587 1.4984

θ1,2002.4 1.0001 44535 0.5731 0.4498 -0.2907 0.2932 0.5654 0.8454 1.4782

θ1,2003.1 1.0001 43988 0.5622 0.4471 -0.3010 0.2838 0.5546 0.8342 1.4621

θ1,2003.2 1.0001 37291 0.5452 0.4410 -0.3203 0.2704 0.5408 0.8168 1.4313

θ1,2003.3 1.0001 38693 0.5391 0.4345 -0.3109 0.2659 0.5333 0.8084 1.4168

θ1,2003.4 1.0001 32654 0.5269 0.4361 -0.3354 0.2559 0.5236 0.7981 1.3973

θ1,2004.1 1.0001 33639 0.5236 0.4348 -0.3382 0.2532 0.5201 0.7932 1.3934

θ1,2004.2 1.0001 33920 0.5215 0.4343 -0.3353 0.2530 0.5179 0.7888 1.3929

θ1,2004.3 1.0001 35824 0.5205 0.4342 -0.3309 0.2537 0.5174 0.7863 1.3922

θ1,2004.4 1.0001 36681 0.5204 0.4319 -0.3223 0.2539 0.5165 0.7838 1.3885

θ1,2005.1 1.0001 37412 0.5201 0.4257 -0.3064 0.2558 0.5155 0.7806 1.3812

θ1,2005.2 1.0002 36843 0.5205 0.4214 -0.2972 0.2598 0.5154 0.7770 1.3725

θ1,2005.3 1.0001 36379 0.5217 0.4164 -0.2895 0.2643 0.5162 0.7754 1.3627

θ1,2005.4 1.0001 36617 0.5255 0.4078 -0.2606 0.2707 0.5192 0.7744 1.3545

θ1,2006.1 1.0002 34089 0.5308 0.3979 -0.2313 0.2782 0.5233 0.7737 1.3475

θ1,2006.2 1.0002 29449 0.5334 0.3846 -0.2040 0.2868 0.5242 0.7695 1.3232

θ1,2006.3 1.0003 17832 0.5433 0.3877 -0.1808 0.2955 0.5298 0.7738 1.3510

θ1,2006.4 1.0003 17602 0.5364 0.3830 -0.1760 0.2910 0.5225 0.7628 1.3350

θ1,2007.1 1.0003 15568 0.5279 0.3825 -0.1742 0.2852 0.5136 0.7497 1.3200

θ1,2007.2 1.0003 15090 0.5131 0.3819 -0.1853 0.2733 0.4977 0.7301 1.2963

θ1,2007.3 1.0003 17072 0.4942 0.3744 -0.1920 0.2595 0.4801 0.7085 1.2588

θ1,2007.4 1.0002 17975 0.4743 0.3648 -0.1952 0.2452 0.4619 0.6850 1.2153

θ1,2008.1 1.0003 14931 0.4586 0.3594 -0.1955 0.2328 0.4463 0.6630 1.1805

θ1,2008.2 1.0004 12644 0.4417 0.3506 -0.1946 0.2227 0.4283 0.6405 1.1440

θ1,2008.3 1.0004 13502 0.4120 0.3312 -0.1996 0.2012 0.4015 0.6070 1.0791

θ1,2008.4 1.0002 25583 0.3254 0.3211 -0.3149 0.1276 0.3318 0.5313 0.9347

θ1,2009.1 1.0003 10997 0.2661 0.3386 -0.4133 0.0753 0.2830 0.4813 0.8630

θ1,2009.2 1.0005 6794 0.2056 0.3626 -0.5274 0.0179 0.2325 0.4318 0.8034

θ1,2009.3 1.0002 15755 0.2281 0.3027 -0.4043 0.0379 0.2384 0.4313 0.7950
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θ1,2009.4 1.0003 10922 0.1981 0.3124 -0.4673 0.0088 0.2129 0.4069 0.7678

θ1,2010.1 1.0001 22022 0.2328 0.3013 -0.3894 0.0432 0.2415 0.4320 0.8035

θ1,2010.2 1.0001 26573 0.2440 0.3082 -0.3920 0.0517 0.2528 0.4452 0.8267

θ1,2010.3 1.0002 22773 0.2391 0.3197 -0.4376 0.0458 0.2519 0.4480 0.8312

θ1,2010.4 1.0001 34419 0.2581 0.3244 -0.4209 0.0621 0.2690 0.4679 0.8669

θ1,2011.1 1.0000 40373 0.2820 0.3372 -0.4045 0.0802 0.2892 0.4917 0.9174

θ1,2011.2 1.0001 31532 0.3040 0.3489 -0.3913 0.0963 0.3071 0.5124 0.9621

θ1,2011.3 1.0001 27986 0.3217 0.3566 -0.3761 0.1119 0.3219 0.5302 0.9990

θ1,2011.4 1.0002 13599 0.3514 0.3758 -0.3405 0.1344 0.3429 0.5532 1.0617

θ1,2012.1 1.0001 21397 0.3515 0.3677 -0.3490 0.1359 0.3456 0.5579 1.0610

θ1,2012.2 1.0001 34389 0.3487 0.3656 -0.3581 0.1337 0.3460 0.5583 1.0484

θ1,2012.3 1.0000 75479 0.3431 0.3559 -0.3687 0.1334 0.3451 0.5555 1.0310

θ1,2012.4 1.0001 61872 0.3378 0.3532 -0.3766 0.1319 0.3438 0.5528 1.0155

θ1,2013.1 1.0002 25032 0.3317 0.3541 -0.3892 0.1303 0.3412 0.5488 0.9949

θ1,2013.2 1.0004 14770 0.3307 0.3552 -0.3892 0.1348 0.3425 0.5486 0.9838

θ1,2013.3 1.0001 44546 0.3663 0.3278 -0.2923 0.1661 0.3672 0.5713 1.0125

θ1,2013.4 1.0000 66205 0.3996 0.3190 -0.2244 0.1989 0.3960 0.5961 1.0478

θ1,2014.1 1.0000 59247 0.4343 0.3122 -0.1600 0.2331 0.4251 0.6252 1.0815

θ1,2014.2 1.0001 47350 0.4563 0.3052 -0.1198 0.2578 0.4460 0.6434 1.0924

θ1,2014.3 1.0001 31929 0.4831 0.2988 -0.0724 0.2851 0.4697 0.6658 1.1146

θ1,2014.4 1.0001 30395 0.4898 0.2871 -0.0464 0.2978 0.4775 0.6691 1.0950

θ1,2015.1 1.0001 38312 0.4775 0.2787 -0.0486 0.2917 0.4679 0.6535 1.0548

θ1,2015.2 1.0001 43864 0.4333 0.2937 -0.1371 0.2472 0.4299 0.6167 1.0233

θ1,2015.3 1.0001 51282 0.4496 0.3030 -0.1266 0.2565 0.4427 0.6370 1.0707

θ1,2015.4 1.0001 36582 0.4791 0.3042 -0.0896 0.2800 0.4664 0.6645 1.1204

θ1,2016.1 1.0002 21982 0.4981 0.3062 -0.0616 0.2955 0.4812 0.6810 1.1519

θ1,2016.2 1.0001 40801 0.4691 0.2917 -0.0822 0.2761 0.4590 0.6509 1.0746

θ1,2016.3 1.0001 29681 0.4757 0.2907 -0.0637 0.2817 0.4636 0.6565 1.0877

θ1,2016.4 1.0001 39819 0.4378 0.2952 -0.1282 0.2471 0.4308 0.6221 1.0403

θ1,2017.1 1.0004 14305 0.4786 0.3246 -0.0962 0.2668 0.4572 0.6632 1.1754

θ1,2017.2 1.0001 43224 0.4433 0.3207 -0.1497 0.2347 0.4284 0.6354 1.1227

θ1,2017.3 1.0000 52662 0.4113 0.3277 -0.2086 0.2046 0.4013 0.6093 1.0859

θ1,2017.4 1.0001 47454 0.3944 0.3375 -0.2419 0.1867 0.3860 0.5957 1.0807

θ1,2018.1 1.0001 54230 0.4002 0.3408 -0.2311 0.1864 0.3881 0.5997 1.1079

θ1,2018.2 1.0003 17909 0.4212 0.3567 -0.2023 0.1965 0.3987 0.6145 1.1782

θ1,2018.3 1.0003 30061 0.4007 0.3416 -0.2208 0.1824 0.3828 0.5959 1.1278
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θ1,2018.4 1.0001 45912 0.3778 0.3323 -0.2394 0.1654 0.3639 0.5736 1.0763

θ1,2019.1 1.0002 39211 0.3660 0.3226 -0.2333 0.1567 0.3529 0.5584 1.0458

θ1,2019.2 1.0004 17481 0.3596 0.3250 -0.2305 0.1491 0.3425 0.5473 1.0487

θ1,2019.3 1.0005 16138 0.3312 0.3155 -0.2446 0.1258 0.3156 0.5169 0.9950

θ1,2019.4 1.0001 23672 0.2276 0.3032 -0.3753 0.0357 0.2278 0.4223 0.8267

θ1,2020.1 1.0001 33699 0.2047 0.3050 -0.3962 0.0058 0.2030 0.4031 0.8126

θ1,2020.2 1.0001 25593 0.1667 0.3246 -0.4759 -0.0418 0.1673 0.3765 0.8065

θ1,2020.3 1.0001 19504 0.1295 0.3362 -0.5474 -0.0871 0.1332 0.3493 0.7865

θ1,2020.4 1.0003 11003 0.0755 0.3890 -0.7410 -0.1539 0.0932 0.3275 0.7922

θ1,2021.1 1.0006 6212 0.0072 0.4638 -0.9920 -0.2312 0.0464 0.3003 0.7824

θ1,2021.2 1.0004 8614 0.0225 0.4687 -0.9988 -0.2283 0.0591 0.3207 0.8290

θ2,1999.2 1.0000 134485 0.7416 0.1886 0.3774 0.6135 0.7399 0.8672 1.1172

θ2,1999.3 1.0000 104600 0.7423 0.2276 0.3098 0.5934 0.7359 0.8838 1.2135

θ2,1999.4 1.0000 75155 0.7389 0.2299 0.3040 0.5876 0.7309 0.8812 1.2208

θ2,2000.1 1.0000 211196 0.6920 0.2208 0.2572 0.5490 0.6901 0.8334 1.1362

θ2,2000.2 1.0000 217235 0.6655 0.2088 0.2505 0.5293 0.6660 0.8019 1.0773

θ2,2000.3 1.0000 171424 0.6380 0.2061 0.2235 0.5043 0.6404 0.7740 1.0399

θ2,2000.4 1.0000 210876 0.6406 0.2252 0.1880 0.4969 0.6415 0.7860 1.0869

θ2,2001.1 1.0000 204512 0.6301 0.2493 0.1229 0.4755 0.6320 0.7870 1.1226

θ2,2001.2 1.0000 202050 0.6283 0.2567 0.1088 0.4707 0.6295 0.7870 1.1399

θ2,2001.3 1.0000 196171 0.6237 0.2397 0.1441 0.4722 0.6243 0.7765 1.0996

θ2,2001.4 1.0000 98299 0.6543 0.2148 0.2376 0.5113 0.6508 0.7943 1.0862

θ2,2002.1 1.0000 91897 0.5614 0.2460 0.0510 0.4079 0.5685 0.7218 1.0323

θ2,2002.2 1.0000 64017 0.5224 0.2752 -0.0651 0.3579 0.5345 0.7018 1.0359

θ2,2002.3 1.0001 50366 0.4912 0.2837 -0.1155 0.3210 0.5056 0.6776 1.0174

θ2,2002.4 1.0001 42247 0.4666 0.2792 -0.1286 0.2940 0.4817 0.6532 0.9839

θ2,2003.1 1.0000 60263 0.4732 0.2748 -0.0997 0.3007 0.4836 0.6560 0.9917

θ2,2003.2 1.0001 35141 0.4372 0.2782 -0.1496 0.2620 0.4494 0.6250 0.9537

θ2,2003.3 1.0001 37836 0.4336 0.2922 -0.1821 0.2510 0.4481 0.6306 0.9748

θ2,2003.4 1.0001 32966 0.4151 0.3336 -0.3126 0.2172 0.4375 0.6360 1.0218

θ2,2004.1 1.0001 37623 0.4148 0.3688 -0.4009 0.2044 0.4407 0.6542 1.0835

θ2,2004.2 1.0001 40650 0.4162 0.3939 -0.4571 0.1962 0.4446 0.6654 1.1375

θ2,2004.3 1.0001 42209 0.4178 0.4116 -0.4988 0.1901 0.4466 0.6753 1.1715

θ2,2004.4 1.0001 43831 0.4186 0.4254 -0.5339 0.1865 0.4489 0.6824 1.2006

θ2,2005.1 1.0001 43769 0.4202 0.4331 -0.5479 0.1839 0.4516 0.6876 1.2183

θ2,2005.2 1.0001 43576 0.4215 0.4354 -0.5520 0.1848 0.4527 0.6889 1.2275
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θ2,2005.3 1.0001 43789 0.4228 0.4331 -0.5452 0.1851 0.4542 0.6897 1.2247

θ2,2005.4 1.0001 45819 0.4282 0.4305 -0.5338 0.1919 0.4575 0.6940 1.2282

θ2,2006.1 1.0001 47740 0.4357 0.4242 -0.5144 0.2019 0.4634 0.6967 1.2287

θ2,2006.2 1.0001 48959 0.4427 0.4123 -0.4746 0.2154 0.4680 0.6985 1.2162

θ2,2006.3 1.0001 54323 0.4544 0.4099 -0.4556 0.2299 0.4775 0.7052 1.2296

θ2,2006.4 1.0000 58506 0.4652 0.4023 -0.4241 0.2458 0.4861 0.7095 1.2278

θ2,2007.1 1.0000 65032 0.4763 0.3894 -0.3855 0.2628 0.4949 0.7120 1.2170

θ2,2007.2 1.0000 75788 0.4945 0.3726 -0.3226 0.2889 0.5070 0.7195 1.2121

θ2,2007.3 1.0000 87931 0.5133 0.3482 -0.2393 0.3181 0.5225 0.7220 1.1913

θ2,2007.4 1.0001 97061 0.5279 0.3224 -0.1560 0.3437 0.5334 0.7208 1.1651

θ2,2008.1 1.0001 97130 0.5416 0.2859 -0.0554 0.3745 0.5433 0.7150 1.1131

θ2,2008.2 1.0001 86381 0.5590 0.2421 0.0674 0.4110 0.5579 0.7089 1.0473

θ2,2008.3 1.0002 46471 0.6105 0.2068 0.2197 0.4758 0.6022 0.7373 1.0459

θ2,2008.4 1.0011 5826 0.7914 0.2362 0.4055 0.6173 0.7616 0.9433 1.3100

θ2,2009.1 1.0002 34070 0.5395 0.1207 0.3090 0.4586 0.5374 0.6175 0.7832

θ2,2009.2 1.0005 6969 0.2784 0.1631 -0.0575 0.1703 0.2883 0.3927 0.5711

θ2,2009.3 1.0001 51153 0.4426 0.1761 0.1099 0.3278 0.4366 0.5498 0.8153

θ2,2009.4 1.0002 22363 0.5062 0.2364 0.0998 0.3515 0.4827 0.6328 1.0571

θ2,2010.1 1.0001 56559 0.4634 0.2404 0.0176 0.3094 0.4494 0.6023 0.9895

θ2,2010.2 1.0000 73793 0.4501 0.2447 -0.0130 0.2924 0.4395 0.5974 0.9729

θ2,2010.3 1.0001 38772 0.4732 0.2642 -0.0091 0.2999 0.4559 0.6280 1.0530

θ2,2010.4 1.0000 60858 0.4473 0.2650 -0.0478 0.2750 0.4339 0.6054 1.0154

θ2,2011.1 1.0000 124378 0.4102 0.2634 -0.0977 0.2402 0.4035 0.5725 0.9580

θ2,2011.2 1.0000 105450 0.4034 0.2582 -0.0904 0.2341 0.3961 0.5639 0.9397

θ2,2011.3 1.0000 135419 0.3757 0.2560 -0.1257 0.2104 0.3715 0.5370 0.8970

θ2,2011.4 1.0000 42287 0.4163 0.2773 -0.0943 0.2331 0.4015 0.5831 1.0128

θ2,2012.1 1.0001 36341 0.4058 0.2718 -0.0986 0.2248 0.3923 0.5734 0.9840

θ2,2012.2 1.0000 55327 0.3637 0.2805 -0.1628 0.1793 0.3522 0.5354 0.9561

θ2,2012.3 1.0000 140767 0.2886 0.2776 -0.2550 0.1089 0.2857 0.4645 0.8533

θ2,2012.4 1.0000 115604 0.2152 0.2929 -0.3847 0.0325 0.2201 0.4032 0.7869

θ2,2013.1 1.0001 62211 0.1542 0.3064 -0.4914 -0.0314 0.1664 0.3537 0.7330

θ2,2013.2 1.0001 54097 0.1202 0.3202 -0.5633 -0.0725 0.1348 0.3282 0.7203

θ2,2013.3 1.0002 55289 0.0970 0.3195 -0.5811 -0.0959 0.1108 0.3050 0.6976

θ2,2013.4 1.0002 49796 0.0715 0.3108 -0.5802 -0.1198 0.0833 0.2751 0.6568

θ2,2014.1 1.0002 38098 0.0380 0.3075 -0.6071 -0.1532 0.0507 0.2423 0.6168

θ2,2014.2 1.0002 37186 0.0248 0.3121 -0.6288 -0.1693 0.0363 0.2306 0.6145
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θ2,2014.3 1.0002 32137 0.0011 0.3250 -0.6875 -0.1978 0.0157 0.2144 0.6082

θ2,2014.4 1.0001 37364 0.0109 0.3316 -0.6840 -0.1905 0.0231 0.2252 0.6411

θ2,2015.1 1.0001 55899 0.0453 0.3195 -0.6054 -0.1541 0.0485 0.2478 0.6743

θ2,2015.2 1.0001 45748 0.1189 0.2956 -0.4448 -0.0751 0.1098 0.3042 0.7318

θ2,2015.3 1.0001 57731 0.0675 0.2812 -0.4816 -0.1164 0.0636 0.2479 0.6371

θ2,2015.4 1.0001 44040 -0.0204 0.2905 -0.6048 -0.2067 -0.0165 0.1691 0.5470

θ2,2016.1 1.0002 25878 -0.0875 0.3147 -0.7466 -0.2839 -0.0745 0.1212 0.5062

θ2,2016.2 1.0001 40862 -0.0677 0.3275 -0.7435 -0.2706 -0.0598 0.1421 0.5681

θ2,2016.3 1.0001 38333 -0.0924 0.3439 -0.8185 -0.2989 -0.0786 0.1266 0.5661

θ2,2016.4 1.0001 50423 -0.0842 0.3393 -0.7930 -0.2885 -0.0749 0.1296 0.5728

θ2,2017.1 1.0002 27934 -0.1419 0.3343 -0.8644 -0.3408 -0.1217 0.0772 0.4741

θ2,2017.2 1.0001 54409 -0.0873 0.3027 -0.7086 -0.2759 -0.0811 0.1070 0.5009

θ2,2017.3 1.0001 74176 -0.0363 0.2825 -0.5862 -0.2196 -0.0396 0.1402 0.5430

θ2,2017.4 1.0001 67681 -0.0249 0.2673 -0.5374 -0.1995 -0.0307 0.1415 0.5266

θ2,2018.1 1.0000 90295 -0.0853 0.2497 -0.5839 -0.2473 -0.0841 0.0778 0.4070

θ2,2018.2 1.0003 17573 -0.2057 0.2746 -0.7969 -0.3763 -0.1877 -0.0172 0.2888

θ2,2018.3 1.0001 30297 -0.1748 0.2801 -0.7788 -0.3438 -0.1573 0.0121 0.3364

θ2,2018.4 1.0001 70048 -0.1324 0.2856 -0.7368 -0.3020 -0.1209 0.0489 0.4140

θ2,2019.1 1.0001 91339 -0.1186 0.2950 -0.7451 -0.2888 -0.1068 0.0619 0.4540

θ2,2019.2 1.0000 113266 -0.1047 0.2900 -0.7218 -0.2698 -0.0950 0.0694 0.4636

θ2,2019.3 1.0001 73503 -0.1176 0.2802 -0.7277 -0.2718 -0.1020 0.0515 0.4137

θ2,2019.4 1.0002 23663 -0.1628 0.2673 -0.7897 -0.2990 -0.1322 0.0058 0.2914

θ2,2020.1 1.0001 40890 -0.1171 0.2118 -0.5991 -0.2302 -0.0996 0.0138 0.2631

θ2,2020.2 1.0000 46988 -0.0778 0.0987 -0.2752 -0.1429 -0.0763 -0.0119 0.1131

θ2,2020.3 1.0000 87838 -0.0542 0.1262 -0.3222 -0.1274 -0.0500 0.0231 0.1915

θ2,2020.4 1.0001 31429 -0.0321 0.0378 -0.1082 -0.0567 -0.0315 -0.0068 0.0402

θ2,2021.1 1.0008 5198 0.2557 0.2018 -0.0530 0.1047 0.2234 0.3820 0.7123

θ2,2021.2 1.0001 19628 0.0971 0.1121 -0.1243 0.0245 0.0977 0.1712 0.3141

Notes: Posterior estimates of the time-invariant and the time-varying parameters obtained with the
shadow rate series of Wu and Xia for the period from 1999.2 to 2021.2. Priors are set according to
the results in Table 1. θ1,1999.2 and θ2,1999.2 correspond to θ1,0 and θ2,0, respectively. Neff stands
for the effective sample size. Calculations carried out with ShinyStan.
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Table B.4: Posterior distribution estimates with tight priors – 1999.2-2021.2

Krippner Wu-Xia

Param. Density Mean Std [0.05, 0.95] Mean Std [0.05, 0.95]

π∗ Normal 1.84 0.93 [1.69,2.00] 1.83 0.087 [1.79,1.98]
σ InvGamma 0.44 0.033 [0.39,0.50] 0.40 0.036 [0.34,0.45]
σν1 InvGamma 0.083 0.034 [0.044,0.15] 0.090 0.038 [0.046,0.16]
σν2 InvGamma 0.076 0.025 [0.045,0.12] 0.11 0.056 [0.054,0.23]
θ1,0 Normal 0.57 0.30 [0.086,1.08] 0.63 0.31 [0.14,1.14]
θ2,0 Normal 0.71 0.14 [0.48,0.94] 0.73 0.15 [0.49,0.97]

Notes: Posterior distribution estimates for time-invariant parameters for the period from 1999.2 to
2021.2 with tight priors for the standard deviations of the innovations in the processes governing
the time-varying response to the expected inflation gap and the expected growth gap. The sample
period from 1999.2 to 2001.4 was used as a training sample. The results obtained from the training
sample were used as priors to estimate the model on the complete sample.

Table B.5: Posterior distribution estimates with tight priors and without model
training – 1999.2-2021.2

Krippner Wu-Xia

Param. Density Mean Std [0.05, 0.95] Mean Std [0.05, 0.95]

σ InvGamma 0.46 0.037 [0.40,0.52] 0.42 0.038 [0.36,0.48]
π∗ Normal 1.84 0.13 [1.64,2.05] 1.83 0.12 [1.66,2.04]
θ1,0 Normal 0.35 0.41 [-0.28,1.06] 0.44 0.43 [-0.22,1.17]
θ2,0 Normal 0.59 0.25 [0.18,1.00] 0.63 0.30 [0.16,1.12]
σν1

InvGamma 0.081 0.032 [0.043,0.14] 0.088 0.036 [0.045,0.16]
σν2 InvGamma 0.076 0.026 [0.044,0.12] 0.11 0.052 [0.052,0.21]

Notes: Posterior distribution estimates for time-invariant parameters for the period from 1999.2 to
2021.2 with tight priors for the standard deviations of the innovations in the processes governing the
time-varying response to the expected inflation gap and the expected growth gap. The estimation
was carried out without conducting any training of the model.

Further results are available on demand from the author of this paper.

54



 
IMFS WORKING PAPER SERIES 

 
Recent Issues 

 
 

182 / 2023 Alexander Meyer-Gohde Solving Linear DSGE Models with 
Bernoulli Iterations 
 

181 / 2023 Brian Fabo 
Martina Jančoková 
Elisabeth Kempf 
Luboš Pástor 
 

Fifty Shades of QE: Robust Evidence 

180 / 2023 Alexander Dück 
Fabio Verona 
 

Robust frequency-based monetary policy 
rules 

179 / 2023 Josefine Quast 
Maik Wolters 
 

The Federal Reserve’s Output Gap: The 
Unreliability of Real-Time Reliability Tests 

178 / 2023 David Finck 
Peter Tillmann 
 

The Macroeconomic Effects of Global 
Supply Chain Disruptions 

177 / 2022 Gregor Boehl Ensemble MCMC Sampling for Robust 
Bayesian Inference 
 

176 / 2022 Michael D. Bauer 
Carolin Pflueger 
Adi Sunderam 
 

Perceptions about Monetary Policy 

175 / 2022 Alexander Meyer-Gohde 
Ekaterina Shabalina 
 

Estimation and Forecasting Using Mixed-
Frequency DSGE Models 

174 / 2022 Alexander Meyer-Gohde 
Johanna Saecker 
 

Solving linear DSGE models with Newton 
methods 

173 /2022 Helmut Siekmann Zur Verfassungsmäßigkeit der 
Veranschlagung Globaler 
Minderausgaben 
 

172 / 2022 Helmut Siekmann 
 

Inflation, price stability, and monetary 
policy – on the legality of inflation 
targeting by the Eurosystem 
 

171 / 2022 Veronika Grimm 
Lukas Nöh 
Volker Wieland 
 

Government bond rates and interest 
expenditures of large euro area member 
states: A scenario analysis 
 

170 / 2022 Jens Weidmann 
 

A new age of uncertainty? Implications for 
monetary policy 
 

169 / 2022  Moritz Grebe 
Peter Tillmann 
 

Household Expectations and Dissent 
Among Policymakers 
 
 
 



168 / 2022 Lena Dräger 
Michael J. Lamla 
Damjan Pfajfar 
 

How to Limit the Spillover from an Inflation 
Surge to Inflation Expectations? 

167 / 2022 Gerhard Rösl 
Franz Seitz 
 

On the Stabilizing Role of Cash for 
Societies 

166 / 2022 Eva Berger 
Sylwia Bialek 
Niklas Garnadt 
Veronika Grimm 
Lars Other  
Leonard Salzmann 
Monika Schnitzer 
Achim Truger 
Volker Wieland 
 

A potential sudden stop of energy imports 
from Russia: Effects on energy security 
and economic output in Germany and the 
EU 

165 / 2022 Michael D. Bauer 
Eric T. Swansson 
 

A Reassessment of Monetary Policy 
Surprises and High-Frequency 
Identification 
 

164 / 2021 Thomas Jost 
Karl-Heinz Tödter 

Reducing sovereign debt levels in the 
post-Covid Eurozone with a simple deficit 
rule 
 

163 / 2021 Michael D. Bauer 
Mikhail Chernov 
 

Interest Rate Skewness and Biased 
Beliefs 

162 / 2021 Magnus Reif 
Mewael F. Tesfaselassie 
Maik Wolters 
 

Technological Growth and Hours in the 
Long Run: Theory and Evidence 

161 / 2021 Michael Haliassos 
Thomas Jansson 
Yigitcan Karabulut 
 

Wealth Inequality: Opportunity or 
Unfairness? 

160 / 2021 Natascha Hinterlang 
Josef Hollmayr 
 

Classification of Monetary and Fiscal 
Dominance Regimes using Machine 
Learning Techniques 
 

159 / 2021 Volker Wieland 
 

The decline in euro area inflation and the 
choice of policy strategy 
 

158 / 2021 Matthew Agarwala 
Matt Burke 
Patrycja Klusak 
Moritz Kraemer 
Kamiar Mohaddes 
 

Rising Temperatures, Falling Ratings: The 
Effect of Climate Change on Sovereign 
Creditworthiness 

157 / 2021 Yvan Lengwiler 
Athanasios Orphanides 
 

Collateral Framework:Liquidity Premia 
and Multiple Equilibria 

156 / 2021 Gregor Boehl 
Cars Hommes 
 

Rational vs. Irrational Beliefs in a Complex 
World 

155 / 2021 Michael D. Bauer 
Eric T. Swanson 

The Fed’s Response to Economic News 
Explains the “Fed Information Effect” 

 


	Vorlage_Deckblatt_WP_182
	ECB_Reaction_Function_Balint_Tatar_IMFS
	Introduction
	A Bayesian time-varying parameter representation
	The model
	Simulation of the posterior density

	Data description
	Results
	Robustness checks and extensions
	Conclusion
	Figures
	Tables

	Vorlage_WP_183_Anhang

