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SOLVING LINEAR DSGE MODELS WITH STRUCTURE PRESERVING
DOUBLING METHODS

JOHANNES HUBER, ALEXANDER MEYER-GOHDE, AND JOHANNA SAECKER

ABSTRACT. This paper applies structure preserving doubling methods to solve the ma-

trix quadratic underlying the recursive solution of linear DSGE models. We present

and compare two Structure-Preserving Doubling Algorithms (SDAs) to other competing

methods – the QZ method, a Newton algorithm, and an iterative Bernoulli approach –

as well as the related cyclic and logarithmic reduction algorithms. Our comparison is

completed using nearly 100 different models from the Macroeconomic Model Data Base

(MMB) and different parameterizations of the monetary policy rule in the medium scale

New Keynesian model of Smets and Wouters (2007) iteratively. We find that both SDAs

perform very favorably relative to QZ, with generally more accurate solutions computed

in less time. While we collect theoretical convergence results that promise quadratic

convergence rates to a unique stable solution, the algorithms may fail to converge when

there is a breakdown due to singularity of the coefficient matrices in the recursion. One of

the proposed algorithms can overcome this problem by an appropriate (re)initialization.

This SDA also performs particular well in refining solutions of different methods or from

nearby parameterizations. JEL classification codes: C61, C63, E17

Keywords: Numerical accuracy; DSGE; Solution methods

1. INTRODUCTION

The major computational hurdle in the solution of linear DSGE models is the solution

of the associated matrix quadratic equation - the current standard in the literature is to

use a generalized Schur or QZ decomposition (Moler and Stewart, 1973; Golub and van

Loan, 2013) to solve this equation. The applied mathematics literature has developed
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numerous different methods to solve quadratic matrix equations, but many of these have

yet to be applied to DSGE models. We fill part of that gap, collecting and developing two

versions of a Structure-Preserving Doubling Algorithm (SDA)1 and applying them to the

solution of linear DSGE models. We show that these methods cannot only be used to

solve DSGE models successfully, but also that their convergence properties enable them

to perform favorably relative to QZ-based methods. This is accomplished by our doubling

algorithms combining the asymptotic quadratic convergence rate of, say, Meyer-Gohde

and Saecker’s (2022) Newton based methods and the convergence to the desired stable

solution like Meyer-Gohde (2023b).

Doubling algorithms are certainly not unknown to economists (see, e.g., Hansen and

Sargent, 2014, Chapter 3.6). Anderson and Moore (1979) consider doubling algorithms

to solve the Riccati equations occuring in optimal linear filtering exercises. Building on

this, Anderson, McGrattan, Hansen, and Sargent (1996, Section 10, p. 224) use doubling

algorithms to receive a conditional log-likelihood function for linear state space models

(see also Harvey, 1990, Chapter 3, p. 119,129). Furthermore, McGrattan (1990) as well

as Anderson, McGrattan, Hansen, and Sargent (1996) apply doubling algorithms to the

Riccati and Sylvester equations in the unknown matrices of the linear solution to LQ

optimal control problems in economics. As our class of models as defined by Dynare

(Adjemian, Bastani, Juillard, Mihoubi, Perendia, Ratto, and Villemot, 2011) (henceforth

Dynare) includes and expands on this class of models, our approach here can be seen as an

extension, specifically to Anderson, McGrattan, Hansen, and Sargent’s (1996) work.2 More

closely related is the application to Riccati equations (see Poloni (2020) for an accessible

introduction to doubling algorithms for Riccati equations), a link between the solution of

Riccati equations and the matrix quadratic we solve is noted explicitly by Higham and Kim

(2000) and Bini, Meini, and Poloni (2008) for example - both are quadratic equations in a

matrix unknown, but with different structures. Chiang, Chu, Guo, Huang, Lin, and Xu

(2009), however, presents explicit results for matrix polynomials with doubling methods

- specifically structure preserving doubling methods, see Huang, Li, and Lin (2018) -

and connects these algorithms to reduction algorithms (Latouche and Ramaswami’s

(1993) logarithmic and Bini and Meini’s (1996) cyclic) that are undocumented algorithms

1See Huang, Li, and Lin (2018) for a book length treatment.
2Note that a doubling algorithm is also used in Dynare in the algorithm disclyap_fast.m for solving

Lyapunov equations in the variance-covariance matrices of linear state space models.
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available in Dynare.3 Beyond relating these algorithms using unified notation, we provide

iterative capabilities (i.e., updating or refining some initialized solution) using Bini and

Meini (2023) that allow us to operate on a starting value for a solution to the matrix

quadratic for the first SDA, First Standard Form (SF1). We show, however, that while

this may reduce the computation time, the asymptotic solution of the second SDA, Second

Standard Form (SF2), is unaffected.

We engage in a number of experiments to compare the algorithms to QZ-based methods4,

Dynare’s implementation of Latouche and Ramaswami’s (1993) logarithmic reduction

algorithm and Bini and Meini’s (1996) cyclic reduction algorithms, Meyer-Gohde and

Saecker’s (2022) Newton algorithms, and Meyer-Gohde’s (2023b) Bernoulli methods

following exactly the latter’s experiments to ensure comparability. We begin by comparing

the methods in the Smets and Wouters (2007) model of the US economy - both at the

posterior mode and in solving for different parameterizations of the Taylor rule. In the

latter, we move through a grid of different values of the reaction of monetary policy to

inflation and output. Whereas the QZ and reduction methods have to recalculate the

entire solution at each new parameter combination, the iterative implementations of the

SDA like Meyer-Gohde and Saecker’s (2022) Newton and Meyer-Gohde’s (2023b) Bernoulli

algorithms can initialize using the solution from the previous, nearby parameterization.

As the parameterizations get closer together, the advantage in terms of computation time

increases significantly, while the accuracy (measured by Meyer-Gohde’s (2022) practical

forward error bounds) remains unaffected. We show that one of the doubling algorithms

profits from this effect, while the other does not - this is consistent with our theoretical

results that this particular doubling algorithm converges to the same solution regardless

of its initialization.

We then compare the different methods using the models in the Macroeconomic Model

Data Base (MMB) (see Wieland, Cwik, Müller, Schmidt, and Wolters, 2012; Wieland,

Afanasyeva, Kuete, and Yoo, 2016), both initializing with a zero matrix (or imply running

Latouche and Ramaswami’s (1993) logarithmic reduction and Bini and Meini’s (1996)

cyclic reduction algorithms) and as solution refinement for iterative implementations (i.e.,

3They, as do others in the literature on doubling algorithms, link the matrix quadratic to Riccati equations

in the context of quasi birth death models, whose matrices are subject to more strict assumptions than ours

-e.g., nonnegative as components of a transition probability matrix, see also Poloni (2020).
4We use Dynare’s (Adjemian, Bastani, Juillard, Mihoubi, Perendia, Ratto, and Villemot, 2011) implemen-

tation of the QZ method, documented in Villemot (2011), for comparison.
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initializing the iterative methods with the QZ solution). We find that the reduction and

doubling methods provide useable alternatives to the standard QZ. The cyclic reduction

algorithm suffers from unreliable convergence to the stable solution and the doubling

algorithms perform more reliably than both the reduction methods, providing higher

accuracy at frequently lower cost than alternatives including QZ. While each of the two

doubling algorithms have their relative advantages as unconditional solution methods, one

is particularly successful as a solution refinement algorithm. This algorithm, consistent

with the grid experiment in the Smets and Wouters (2007) model, reliably provides

large increases in accuracy at low additional computation costs - exactly what would be

demanded of such an algorithm.

The remainder of the paper is organized as follows. Section 2 lays out the general

DSGE model class. Section 3 presents the structure-preserving doubling algorithm. In

section 4, we consider practical and theoretical aspects like the choice of initial value,

solvability, accuracy and convergence. In section 5, we investigate the properties of the

outlined algorithm using the suite of models from the MMB. Finally, section 6 concludes.

2. PROBLEM STATEMENT

The standard set of numerical solution packages for dynamic stochastic macroeconomic

models5 all analyze models that can generally be brought into the following nonlinear

functional equation

0= E t[ f (yt+1, yt, yt−1,εt)] (1)

The ny-dimensional vector-valued function f :Rny ×Rny ×Rny ×Rne →Rny comprises the

conditions (first order conditions, resource constraints, market clearing, etc.) that charac-

terize the model; the endogenous variables yt ∈Rny are a vector of size ny ; and the vector

of ne exogenous shocks are contained in εt ∈Rne , where ny and ne are positive integers

(ny,ne ∈N) and εt has a known mean zeros distribution.

The solution to the model (1) is the unknown function

yt = y(yt−1,εt), y :Rny+ne →Rny (2)

5E.g., Dynare (Adjemian, Bastani, Juillard, Mihoubi, Perendia, Ratto, and Villemot, 2011), Gensys (Sims,

2001), (Perturbation) AIM (Anderson and Moore, 1985; Anderson, Levin, and Swanson, 2006), Uhlig’s

Toolkit (Uhlig, 1999) and Solab (Klein, 2000)
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that maps states, yt−1 and εt, into endogenous variables, yt. A closed form for (2) is

generally not available and we must then find an approximation. One point in the

solution, the deterministic steady state, y ∈Rny a vector such y= y(y,0) and 0= f (y, y, y,0)

can often be solved for, be it analytically or numerically, and this steady state provides a

point around which local solutions can be expanded.

The linear, or first-order, approximation of (1) at the steady state gives

0= AE t [yt+1]+Byt +Cyt−1 +Dεt (3)

where A, B, C, and D are the derivatives of f in (1) evaluated at the steady state and the

y’s in (3) now, reusing notation, are the (log) deviations of the endogenous variables from

their steady states, y.

The solution to the linearized model (3) is a linear solution in the form, following (2),

yt = P yt−1 +Q εt (4)

which is a recursive solution that expresses yt as a function of its own past, yt−1, and the

shocks, εt.

Using our linear solution (4), it yields through substitution into (3) - and recognizing

that the expectation E t [εt+1]= 0 is known - the following two equations

0= AP2 +BP +C, 0= (AP +B)Q+D (5)

With the former solution being quadratic with potentially multiple solutions, a selection

criteria has to be used and generally a unique (semi) stable solution P is sought by the

literature, that is a P with all its eigenvalues inside the open unit circle. As Lan and

Meyer-Gohde (2014) prove the latter can be uniquely solved for Q if such a P can be found,

our focus will be the former, the unilateral quadratic matrix equations (UQME).

In the following we show how to solve for P in (5) using structure-preserving doubling

algorithms.

3. DOUBLING METHODS FOR LINEAR DSGE MODELS

In this section we present two doubling algorithms to solve the UQME (5) for a unique

(almost) stable solution P, which rely on the so-called First Standard Form (SF1) and

Second Standard Form (SF2), respectively. Further we will show that the latter is closely

related to the Cyclic and Logarithmic Reduction algorithm implemented in Dynare.
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To illustrate doubling methods and build intuition, consider first the calculation of the

geometric series

x =
∞∑
j=0

β j,
∣∣β∣∣< 1 (6)

The solution x can be expressed as the limit of the partial sum

x = 1
1−β = lim

k→∞
xk, xk =

k∑
j=0

β j (7)

and x can be recovered by iterating on

xk = 1+βxk−1, k ≥ 0, x−1 = 0 (8)

alternatively, we can use a doubling algorithm. Consider the 2k−1’th partial sum

x2k−1 =
2k−1∑
j=0

β j = 1+β+β2 + . . .+βk−1︸ ︷︷ ︸
k terms

+βk + . . .+β2k−1︸ ︷︷ ︸
k terms

=
k−1∑
j=0

β j +βk
k−1∑
j=0

β j (9)

Iterating on

wk+1 = wk +αkwk, αk+1 =α2
k, k ≥0, w0 = 1, α0 =β (10)

Gives for the first several terms

w0 = 1︸︷︷︸
x0

, w1 = w0 +α0w0 = 1+β︸ ︷︷ ︸
x1

, α1 =β2 =β21
(11)

w2 = w1 +α1w1 = 1+β+β2 (
1+β)= 1+β+β2 +β3︸ ︷︷ ︸

x3

, α2 =β4 =β22
(12)

w3 = w2 +α2w2 = 1+β+β2 +β3 +β4 (
1+β+β2 +β3)= 7∑

j=0
β j

︸ ︷︷ ︸
x7

, α3 =β8 =β23
(13)

the relation wk = x2k−1 and the factor 2k gives the method its name. Clearly wk will

converge more quickly in k to x than xk.

In terms of a vector space, we can define xk via 1

xk


︸ ︷︷ ︸

Xk

=
1 0

1 β


︸ ︷︷ ︸

S

 1

xk−1

 (14)

with
(
1 x−1

)′
=

(
1 0

)′
. We can either iterate on the foregoing 2k times to recover x2k−1,

or look for a doubling approach

X2k−1 = S2k
X−1 = S2k−1

S2k−1
X−1 (15)
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S is lower triangular and hence so is S2k
. If we can find a doubling approach that

preserves this structure, say,

S2k =
 1 0

ek fk

 (16)

then we can reduce the difficulty of the problem significantly, as the structure enables us

to define the recursion in the entries ek and fk instead of S2k
in its entirety. From this

structure, it follows that

S2k = S2k−1
S2k−1 =

 1 0

ek−1 fk−1

 1 0

ek−1 fk−1

=
 1 0

ek−1 + fk−1ek−1 f 2
k−1

 (17)

which gives the recursions for the structure preserving doubling algorithm as

fk = f 2
k−1, ek = ek−1 + fk−1ek−1 (18)

and again we have a doubling in wk = ek+ fkwk−1 as wk = x2k−1 with the initial conditions

w−1 = 0, f0 =β, and e0 = 1. Notice that while the key theoretical insight is formulating a

doubling approach to Sk, i.e., S2k
, the key computational insight is the structure, here

lower triangularity, that enables to find recursions in elements of S2k
, namely ek and fk,

instead of S2k
in its entirety.

3.1. Matrix Quadratics, Pencils, QZ, and Doubling

To enable our doubling approach, we will first express the UQME in (5) as a subspace

problem by forming the first companion linearization of the matrix quadratic problem

(Hammarling, Munro, and Tisseur, 2013; Meyer-Gohde and Pigkou, 2023)

A X =BX M (19)

with

X =
 I

P

 A =
0 I

C B

 , B =
I 0

0 −A

 , M = P.

Clearly, any P satisfying (5) is a solution of (19). Further note that the eigenvalues

of M are a subset of the generalized eigenvalues of the matrix pencil A −λB, i.e.,

eig(M )⊂ eig(A0,B0).

Before we address solving (19), we will assume the conditions for the existence of the

unique solvent P are fulfilled, i.e., Blanchard and Kahn’s (1980) celebrated rank and order
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conditions.6 We will make one more assumption to be able to prove quadratic convergence

later via the corresponding dual equation to the UQME (5) which is the quadratic equation

above “in reverse”

0= CP2
d +BPd + A. (20)

Throughout this paper, we assume with respect to P and Pd that the following statement

is true.

Assumption 1. There exist solvents P and Pd satisfying the UQMEs in (5) and (20),

respectively, such that

ρ(P) := max
λ∈eig(P)

|λ| ≤ 1, ρ(Pd) := max
λ∈eig(Pd)

|λ| ≤ 1, ρ(P) ·ρ(Pd)< 1.

So note that assumption 1 implies the Blanchard and Kahn (1980) rank and order

conditions and is the usual assumption on P, see above. The condition on Pd in assumption

1 will provide sufficient conditions for quadratic convergence of the algorithms presented

below.

The problem in (19) is numerically an eigenvalue problem and can thus be solved

using the QZ or generalized Schur decompostion of Moler and Stewart (1973). We

will derive the solution by working directly with the linear algebraic problem instead

of dynamic model as is usually done. This should link the more familiar QZ with

the doubling algorithms we will subsequently present. The decomposition provides

unitary Q and Z and upper triangular S and T with Q∗BZ = S and Q∗A Z = T

where the eigenvalues of the matrix pencil PBA (z) = Bz −A , ρ(PBA ) = ρ(PST) ={
tii/sii, if sii ̸= 0; ∞, if sii = 0; ;, if sii = tii = 0; i = 1, . . . ,2ny

}
, can be ordered arbitrarily

to form T11 T12

0 T22

ws

wu

=
S11 S12

0 S22

ws

wu

P (21)

where Z∗
[
I P ′

]′
=

[
ws′ wu′

]′
. We assume the decomposition is ordered so that the

unstable eigenvalues are in the lower right blocks of S and T (hence S22 and T22),

wherefor the lower block equation gives

T22wu = S22wuP ⇒ wu = T−1
22 S22wuP (22)

6Lan and Meyer-Gohde (2014) and Meyer-Gohde (2022) provide the conditions expressed in terms of the

general class of multivariate models we consider here.
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as the eigenvalues of T−1
22 S22 are inside the unit circle and P is a (semi) stable solvent we

can iterate

wu = T−1
22 S22wuP = (

T−1
22 S22

)2 wuP2 = (
T−1

22 S22
) j wuP j →

j→∞
0 (23)

for a unit root stable P. Using the definition of wu

0= wu = Z∗
21 +Z∗

22P ⇒ P =−Z∗
22

−1Z∗
21 = Z21Z−1

11 (24)

where ∗ indicates the complex conjugation of Z that delivers its inverse by virtue of it

being a unitary matrix. The equivalence Z∗
22

−1Z∗
21 =−Z21Z−1

11 follow from the properties

of unitary matrices and Z21Z−1
11 =Q11S−1

11 T11Q−1
11 from the first block rows of A and B in

(19) and upper triangularity of S and T. From Q11S−1
11 T11Q−1

11 , it follows that the recursion

in P is indeed stable from the ordering of the eigenvalues above, i.e. the eigenvalues of the

upper left block of the generalized Schur decomposition, det (S11λ−T11)= 0, are inside

the unit circle.7 So the QZ decomposition applied to our matric pencil will recover the

unique (semi) stable solvent P if it exists consistent with our assumption 1. Importantly,

we did not solve the problem by working directly with the pencil PBA (z) =Bz−A but

first transformed the problem unitarily with Q and Z.

Analogous to our geometric series, we would also like to find a way to approach the

matrix pencil problem here via a doubling approach. Following Guo, Lin, and Xu (2006) a

transformation Â −λB̂ of a pencil A −λB is called a doubling transform if

Â =A A , B̂ =BB (25)

for A and B that satisfy

rank
([

A B
])

= 2ny,
[
A B

] A

−B

= 0 (26)

That is, we will be transforming the problem here as in QZ above, seeking a structure

that amenable to doubling instead of the upper triangularity sought there.

Such a doubling transformation is eigenspace preserving and eigenvalue squaring

(“doubling”) following Guo, Lin, and Xu (2006, Theorem 2.1) or Huang, Li, and Lin (2018,

Theorem 3.1) that we repeat here adapted to our problem

7Meyer-Gohde (2023a) derives this representation for the recursive solution in yt directly. The parallel

derivation here emphasises the equivalence of solving the matrix quadratic in P or for a recursive solution

in yt.
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Theorem 1 (Doubling Pencil). Suppose Â −λB̂ is a doubling transformation of the pencil

A −λB. Then, as

A X =BX M (27)

from (19)

Â X = B̂X M 2 (28)

Proof. Starting with (19) and multiplying with A gives

A X =BX M → A A X =A BX M → Â X =A BX M (29)

From
[
A B

] A

−B

= 0 it follows that A B =BA

Â X =A BX M → Â X =BA X M (30)

Then substituting BX M for A X following (19) on the right hand side of the foregoing

gives

Â X =BA X M → Â X =BBX MM → Â X = B̂X M 2 (31)

where we completed the proof by recalling the definition of B̂ □

Following this theorem, we obtain a doubling algorithm for (19) by iterating on

Âk︸︷︷︸
Ak+1

=A kAk, B̂k︸︷︷︸
Bk+1

=BkBk (32)

initializing with A and B as

A X =BX M (33)

A1X =B1X M 2 (34)

A2X =B2X M 4 (35)

AkX =BkX M 2k
(36)

As above for the geometric series, we seek a structure in A and B such that we calculate

Ak →Ak+1 and Bk →Bk+1 by recursions in elements (here we will settle for submatrices).

In the following two section, we provide exactly such recursions, First Standard Form and

Second Standard Form. Both require we rearrange our pencil A −λB to conform to the

respective structures of the two recursions, as we now show.
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3.2. First Standard Form

Assuming that B is non-singular we receive the primal problem in SF1

A0X =B0X M , (37)

with

A0 =
 E0 0

−X0 I

 := SA , B0 =
I −Y0

0 F0

 := SB, S =
I −B−1

0 B−1

 .

multiplying (19) from the left by S. Note that (19) and (37) are equivalent in the sense

that pencils A −λB and A0 −λB0 share the same set of generalized eigenvalues, i.e.,

eig(A ,B)= eig(A0,B0).

The SDA for SF1 recursively computes sequences {Ak}∞k=0, {Bk}∞k=0 with

Ak+1 =
 Ek+1 0

−Xk+1 I

 :=
 Ek (I −Yk Xk)−1 0

−Fk (I − XkYk)−1 Xk I

Ak, (38)

Bk+1 =
I −Yk+1

0 Fk+1

 :=
I −Ek (I −Yk Xk)−1 Yk

0 Fk (I − XkYk)−1

Bk, (39)

such that

AkX =BkX M 2k
. (40)

A key feature here is that (40) retains SF1 for all k ∈ N. Algorithm 1 summarizes the

SDA for the SF1. The intuition here is that under some fairly general preconditions, e.g.,

Assumption 1, the term BkX M 2k
on the right-hand side of (40) converges to zero for

k →∞, so that consequently Xk converges to P.

3.3. Second Standard Form

As an alternative to Algorithm 1, Chiang, Chu, Guo, Huang, Lin, and Xu (2009) show

that the UQME (5) can also be solved using a doubling algorithm based on the eigenvalue

problem

A †
0 X † =B†

0X †M , (41)

with

X † =
 I

AP

 , A †
0 =

 E†
0 0

−X †
0 I

 :=
−C 0

0 I

 , B†
0 =

−Y †
0 I

−F†
0 0

 :=
B I

A 0

 ,M = P
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Algorithm 1: Structure-Preserving Doubling Algorithm (SF1)

Given: A, B, C, and a convergence criterion ϵ

Set X0, Y0, E0, F0 according to

X0 =−B−1C, Y0 =−B−1A, E0 =−B−1C, F0 =−B−1A

While criterion(Xk) > ϵ do

Set Ek+1 = Ek (I −Yk Xk)−1 Ek

Set Fk+1 = Fk (I − XkYk)−1 Fk

Set Xk+1 = Xk +Fk (I − XkYk)−1 XkEk

Set Yk+1 =Yk +Ek (I −Yk Xk)−1 YkFk

Advance k = k+1

end

Return: Xk

which satisfies the so-called Second Standard Form (SF2). Obviously, again any P satisfy-

ing (5) is also a solution of (41). Note that A −λB and A †
0 −λB†

0 again share the same

set of generalized eigenvalues, i.e., eig(A ,B)= eig(A †
0 ,B†

0).

Similar to Algorithm 1 the SDA for SF2 recursively computes sequences {A †
k }∞k=0,

{B†
k}∞k=0 with

A †
k+1 =

 E†
k+1 0

−X †
k+1 I

 :=
E†

k

(
X †

k −Y †
k

)−1
0

F†
k

(
X †

k −Y †
k

)−1
I

Ak, (42)

B†
k+1 =

−Y †
k+1 I

−F†
k+1 0

 :=
I E†

k

(
X †

k −Y †
k

)−1

0 F†
k

(
X †

k −Y †
k

)−1

Bk, (43)

such that

A †
k X † =B†

kX †M 2k
. (44)

We summarize the SDA for the SF2 in Algorithm 2. Note that compared to Algorithm 1

the sequence {X †
k}∞k=0 now converges to AP instead of P. However, in case of convergence

we may obtain an P approximately as −(X †
k +B)−1C.



SOLVING LINEAR DSGE MODELS WITH STRUCTURE PRESERVING DOUBLING METHODS 13

Algorithm 2: Structure-Preserving Doubling Algorithm (SF2)

Given: A, B, C, and a convergence criterion ϵ

Set X †
0, Y †

0 , E†
0, F†

0 according to

X †
0 = 0, Y †

0 =−B, E†
0 =−C, F†

0 =−A

While criterion(X †
k) > ϵ do

Set E†
k+1 = E†

k

(
X †

k −Y †
k

)−1
E†

k

Set F†
k+1 = F†

k

(
X †

k −Y †
k

)−1
F†

k

Set X †
k+1 = X †

k −F†
k

(
X †

k −Y †
k

)−1
E†

k

Set Y †
k+1 =Y †

k +E†
k

(
X †

k −Y †
k

)−1
F†

k

Advance k = k+1

end

Return: −(X †
k +B)−1C

3.4. Cyclic and Logarithmic Reduction

SDAs generate a sequence of matrix pencils, in each step squaring the corresponding

eigenvalues. In contrast, Bini and Meini’s (1996) Cyclic Reduction and Latouche and

Ramaswami’s (1993) Logarithmic Reduction, that are already implemented in Dynare,

generate sequences of matrix polynomials whose eigenvalues are squared in each step. In

the following we outline the idea of the Cyclic and Logarithmic Reduction and illustrate

the links to the SDA of SF2.8

The Cyclic Reduction computes the sequences {Ak}∞k=0, {Bk}∞k=0, {Ck}∞k=0, and {B̂k}∞k=0

with

Ak+1 =−Ak B−1
k Ak, A0 = A, (45)

Bk+1 = Bk − Ak B−1
k Ck −Ck B−1

k Ak, B0 = B, (46)

Ck+1 =−Ck B−1
k Ck, C0 = C, (47)

B̂k+1 = B̂k − Ak B−1
k Ck B̂0 = B. (48)

8For a comprehensive textbook treatment see Bini, Iannazzo, and Meini (2011, Chapter 5.2) and Bini,

Latouche, and Meini (2005, Chapter 7)
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Using a divide-and-conquer strategy one can show that the Cyclic Reduction defines a

sequence of UQMEs with

0= AkM 2
k +BkMk +Ck. (49)

where Mk =M 2k
. Moreover, we may state that

0= AkMkM + B̂kM +C, (50)

To see this note that both (49) and (50) will clearly hold for k = 0. Further, assuming that

(49) and (50) hold for an arbitrary k ≥ 0, we may multiply (49) from the right by M , Mk

and M 2
k , respectively, and receive

0= AkM 2
k M +BkMkM +CkM , (51)

0= AkM 3
k +BkM 2

k +CkMk, (52)

0= AkM 4
k +BkM 3

k +CkM 2
k . (53)

If we now add CkMk, AkMkM , and AkM 3
k to (49), (51), and (53) multiplied by −CkB−1

k ,

−AkB−1
k , and −AkB−1

k , respectively, we get

CkMk =−CkB−1
k Ak M 2

k −CkB−1
k Ck, (54)

AkMkM =−AkB−1
k Ak M 2

k M − AkB−1
k Ck M , (55)

AkM 3
k =−AkB−1

k Ak M 4
k − AkB−1

k Ck M 2
k . (56)

Finally, substituting (54) and (56) in (52) as well as (55) in (50)

0= Ak+1 M 2
k+1 +Bk+1 Mk+1Ck+1, (57)

0= Ak+1 Mk+1M + B̂k+1M +C. (58)

Hence, (49) and (50) hold in k+1 as well. Furthermore, assuming that lim
k→∞

B̂−1
k exists and

that lim
k→∞

B̂−1
k AkMkM = 0 we can express the solvent P as

P =− lim
k→∞

B̂−1
k C. (59)

As pointed out by Bini, Iannazzo, and Meini (2011, pp. 167) and Chiang, Chu, Guo,

Huang, Lin, and Xu (2009, pp. 236) the SDA for SF2 is connected to the Cyclic Reduction

(Algorithm 3). In detail, we can show via induction that

B̂k = B+ X †
k, Bk = X †

k −Y †
k , Ck =−E†

k, Ak =−F†
k,

for all k ≥ 0. Hence, Algorithms 2 and 3 are theoretically equivalent.
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Algorithm 3: Cyclic Reduction

Given: A, B, C, and a convergence criterion ϵ

Set A0, B0, C0, and B̂0 according to

A0 = A, B0 = B, C0 = C, B̂0 = B

While criterion(B̂k) > ϵ do

Set Ak+1 =−AkB−1
k Ak

Set Bk+1 = Bk − AkB−1
k Ck −CkB−1

k Ak

Set Ck+1 =−CkB−1
k Ck

Set B̂k+1 = B̂k − AkB−1
k Ck

Advance k = k+1

end

Return: −B̂−1
k C0

Another algorithm already implemented in Dynare is the Logarithmic Reduction by

Latouche and Ramaswami (1993), which uses the same divide-and-conquer strategy as

the Cyclic Reduction to obtain {Hk}∞k=0, {Lk}∞k=0, {Ĥk}∞k=0, and {L̂k}∞k=0 with

Hk+1 = (I −HkLk −LkHk)−1 H2
k, H0 =−B−1A (60)

Lk+1 = (I −HkLk −LkHk)−1 L2
k, L0 =−B−1C, (61)

Ĥk+1 = ĤkHk+1, Ĥ0 =−B−1A, (62)

L̂k+1 = L̂k + ĤkLk+1, L̂0 =−B−1C, (63)

that define a sequence of UQMEs with

0= HkM 2
k −Mk +Lk. (64)

Furthermore, analogously to (50) we receive

0= ĤkMk+1 −M + L̂k. (65)

The Logarithmic Reduction is connected to the Cyclic Reduction. As pointed out by Bini,

Latouche, and Meini (2005, Theorem 7.5), we may show via induction that for all k ≥ 0

Hk =−B−1
k Ak, Lk =−B−1

k Ck,
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so that (64) follows directly from multiplying (49) from the left by −B−1
k . Consequently,

there is also a link between Algorithm 2 and the Logarithmic Reduction (Algorithm 4). In

detail, we get for all k ≥ 0 that

Hk =
(
X †

k −Y †
k

)−1
F†

k Lk =
(
X †

k −Y †
k

)−1
E†

k

Note that (65) also follows by induction, where in k = 0 we get (65) directly from multi-

plying (5) from the left by B−1. Now, assuming that (65) holds for an arbitrary k ≥ 0, we

get

0= ĤkMk+1 −M + L̂k,

= ĤkHk+1M
2
k+1 + ĤkLk+1 −M + L̂k,

= Ĥk+1M
2
k+1 −M + L̂k+1, (66)

where we can use the fact that from (64) follows that Mk+1 = Hk+1M
2
k+1 +Lk+1. Similar

to the Cyclic Reduction we can express the stable solvent of the the UQME (5) as

P = lim
k→∞

L̂k, (67)

assuming lim
k→∞

ĤkMk+1 = 0.

We display the Cyclic and the Logarithmic Reduction in Algorithms 3 and 4. Summariz-

ing, we can state that compared to the doubling algorithm, the reduction algorithms follow

a similar idea by squaring the eigenvalues of matrix polynomials. Beyond that, abstract-

ing from numerical inaccuracies, we find that for a given number of iterations SF2 in

algorithm 2 and the Cyclic Reduction in algorithm 3 will deliver identical approximation

to P. While the Cyclic and Logarithmic Reduction generate interchangeable sequences

of UQMEs ((49) and (64)), the two algorithms differ in the way in which they recover the

approximation to P ((50) and (65)). Hence, although we can link some quantities computed

by the Logarithmic Reduction to the quantities of the Cyclic Reduction / SF2, we will in

general receive distinct approximations to P.
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Algorithm 4: Logarithmic Reduction

Given: A, B, C, and a convergence criterion ϵ

Set L0, H0, L̂0, Ĥ0 according to

L0 =−B−1C, H0 =−B−1A, L̂0 =−B−1C, Ĥ0 =−B−1A

While criterion(L̂k) > ϵ do

Set Uk = (I −HkLk −LkHk)

Set Lk+1 =U−1
k L2

k

Set Hk+1 =U−1
k H2

k

Set L̂k+1 = L̂k + ĤkLk+1

Set Ĥk+1 = ĤkHk+1

Advance k = k+1

end

Return: L̂k

4. THEORETICAL AND PRACTICAL CONSIDERATIONS

In this section we present theoretical and practical considerations relating to the

doubling methods. In particular we will address the convergence of the algorithms, the

ability to adapt the algorithms to accept initializations for the solution P, and our measure

of accuracy.

4.1. Convergence

A major advantage of SDAs – regardless of a particular starting value – is that they

provide quadratic convergence at relatively low computational cost per iteration. We

establish sufficient conditions for quadratic convergence in the following theorem.

Theorem 2 (Convergence). Suppose P and Pd exist and satisfy Assumption 1. Then

following statements are true.

(1) If the sequences {Xk}∞k=0, {Yk}∞k=0, {Ek}∞k=0, and {Fk}∞k=0 are well defined, i.e., all the

inverses exist during the doubling iteration process, Xk converges to P quadratically,

and moreover, limsup
k→∞

∥Xk −P∥1/2k ≤ ρ(P) ·ρ(Pd).
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(2) If the sequences {X †
k}∞k=0, {Y †

k }∞k=0, {E†
k}∞k=0, and {F†

k}∞k=0 are well defined, i.e., all the

inverses exist during the doubling iteration process, X †
k converges to AP quadrati-

cally, and moreover, limsup
k→∞

∥X †
k − AP∥1/2k ≤ ρ(P) ·ρ(Pd).

(3) If the sequences {Lk}∞k=0, {Hk}∞k=0, {L̂k}∞k=0, and {Ĥk}∞k=0 are well defined, i.e., all the

inverses during the Logarithmic Reduction exist, L̂k converges to P quadratically,

and moreover, limsup
k→∞

∥L̂k −P∥1/2k ≤ ρ(P) ·ρ(Pd).

Proof. See the appendix. □

Note that Theorem 2 also applies to the cyclic reduction presented in Algorithm 3, since

it is equivalent to the SDA for SF2. Consequently, under Assumption 1 Algorithms 1 to 4

will all converge quadratically to the unique (semi) stable solution P.

4.2. Initial guess

A disadvantage of SDAs is that numerical inaccuracies can propagate from iteration to

iteration, e.g., if the matrices to be inverted are not well conditioned. In the context of

discrete algebraic Riccati equations (DAREs), Mehrmann and Tan (1988) show that such

a defection of the approximate solution again satisfies a DARE. As a result, after solving

a DAREs, one can solve the associated DAREs of the approximation error to increase

the overall accuracy. Following this idea Bini and Meini (2023), show how to incorporate

an initial guess to Algorithm 1 by means of an equivalence transformation of the pencil

A −λB. Huang, Li, and Lin (2018) discuss similar transformations for algebraic Riccati

equations (AREs) in general.

In detail, we can introduce an initial guess by transforming the eigenvalue problem

(19) to

Â X̂ = B̂ X̂ M (68)

with

X̂ :=
 I

P̂

 Â :=A

 I 0

P0 I

 , B̂ :=B

 I 0

P0 I

 ,

where P0 is the initial guess such that P = P̂ +P0. Assuming that B+ AP0 has full rank

we then may multiply Â and B̂ by

Ŝ =
 (B+ AP0)−1 B − (B+ AP0)−1

I − (B+ AP0)−1 B (B+ AP0)−1


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to receive the corresponding problem in SF1, i.e.,

Â0 X̂ = B̂0 X̂ M , (69)

with

Â0 =
 Ê0 0

−X̂0 I

 := ŜÂ , B̂0 =
I −Ŷ0

0 F̂0

 := ŜB̂.

Algorithm 5 summarizes the SDA for SF1 based on an initial guess P0. Note that a

good guess P0 should increase the probability that B+ AP0 is well-conditioned, since

under Assumptions 1 we know that B+ AP has full rank (see Lan and Meyer-Gohde,

2014). In comparison to Algorithm 1 to 3 which are only applicable for non-singular B,

Algorithm 5 can handle situations where B is singular, provided we can determine a

matrix P0 such that B+ AP0 is non-singular.9

Algorithm 5: Structure-Preserving Doubling Algorithm (SF1) - with initial guess

Given: A, B, C, P0 and a convergence criterion ϵ

Set X̂0, Ŷ0, Ê0, F̂0 according to

X̂0 =−P0 − (B+ AP0)−1C, Ŷ0 =−(B+ AP0)−1A,

Ê0 =−(B+ AP0)−1C, F̂0 =−(B+ AP0)−1A

While criterion(X̂k) > ϵ do

Set Êk+1 = Êk
(
I − Ŷk X̂k

)−1 Êk

Set F̂k+1 = F̂k
(
I − X̂kŶk

)−1 F̂k

Set X̂k+1 = X̂k + F̂k
(
I − X̂kŶk

)−1 X̂kÊk

Set Ŷk+1 = Ŷk + Êk
(
I − Ŷk X̂k

)−1 ŶkF̂k

Advance k = k+1

end

Return: X̂k +P0

Following the idea of Bini and Meini (2023) and applying it to Chiang, Chu, Guo,

Huang, Lin, and Xu’s (2009) Algorithm 2, we take again P0 as the initial guess such that

9Chiang, Fan, and Lin (2010) use a similar technique to solve DAREs with singular transition matrices.
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P = P̂ +P0 and insert this into the UQME (5)

0= A
(
P̂ +P0

)2 +B
(
P̂ +P0

)+C = AP̂2 + AP̂P0 + (AP0 +B) P̂ + AP2
0 +BP0 +C (70)

This can be written as (41) with

X̂ † =
 I

AP̂

 , Â †
0 =

 Ê†
0 0

−X̂ †
0 I

 :=
 −C 0

AP0 I

 , B̂†
0 =

−Ŷ †
0 I

−F̂†
0 0

 :=
AP0 +B I

A 0

 ,M = P

Algorithm 6 summarizes the SDA for SF2 based on an initial guess P0.

Algorithm 6: Structure-Preserving Doubling Algorithm (SF2) - with initial guess

Given: A, B, C, P0 and a convergence criterion ϵ

Set X̂ †
0, Ŷ †

0 , Ê†
0, F̂†

0 according to

X̂ †
0 =−AP0, Ŷ †

0 =− (AP0 +B) , Ê†
0 =−C, F̂†

0 =−A

While criterion(X̂ †
k) > ϵ do

Set Ê†
k+1 = Ê†

k

(
X̂ †

k − Ŷ †
k

)−1
Ê†

k

Set F̂†
k+1 = F̂†

k

(
X̂ †

k − Ŷ †
k

)−1
F̂†

k

Set X̂ †
k+1 = X̂ †

k − F̂†
k

(
X̂ †

k − Ŷ †
k

)−1
Ê†

k

Set Ŷ †
k+1 = Ŷ †

k + Ê†
k

(
X̂ †

k − Ŷ †
k

)−1
F̂†

k

Advance k = k+1

end

Return: −(AP0 + X̂ †
k +B)−1C

While this is a straightforward application of the initial guess approach of Algorithm 5

to the SDA for SF2 in Algorithm 2, the algorithm will deliver the same approximation to

P regardless of P0. We summarize this in the following theorem following Huang, Li, and

Lin (2018, Theorem 3.32) and the surrounding discussion.
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Theorem 3. Let X †
t , Y †

t , E†
t , and F†

t denote the quantities of the Structure-Preserving

Doubling Algorithm (SF2) and let X̂ †
t , Ŷ †

t , Ê†
t , and F̂†

t be the quantities of the Structure-

Preserving Doubling Algorithm (SF2) with an initial guess P0. Then we may state that

X̂ †
t = X †

t − AP0,

Ŷ †
t =Y †

t − AP0,

Ê†
t = E†

t ,

F̂†
t = F†

t ,

Hence, both algorithms will eventually return the same approximation for P.

Proof. We can show the statement by induction. For k = 0 we have

X̂ †
0 =−AP0 = X †

0 − AP0,

Ŷ †
0 =−AP0 −B =Y †

0 − AP0,

Ê†
0 =−C = E†

0,

F̂†
0 =−A = F†

0.

Further, assuming that the claim holds for an arbitrary k ≥ 0 we have(
X̂ †

k − Ŷ †
k

)
=

(
X †

k − AP0 −Y †
k + AP0

)
=

(
X †

k −Y †
k

)
,

and therefore

Ê†
k+1 = Ê†

k

(
X̂ †

k − Ŷ †
k

)−1
Ê†

k

= E†
k

(
X †

k −Y †
k

)−1
E†

k = E†
k+1

F̂†
k+1,= F̂†

k

(
X̂ †

k − Ŷ †
k

)−1
F̂†

k

= F†
k

(
X †

k −Y †
k

)−1
F†

k = F†
k+1

X̂ †
k+1,= X̂ †

k − F̂†
k

(
X̂ †

k − Ŷ †
k

)−1
Ê†

k

= X †
k − AP0 −F†

k

(
X †

k −Y †
k

)−1
E†

k = X †
k+1 − AP0

Ŷ †
k+1,= Ŷ †

k + Ê†
k

(
X̂ †

k − Ŷ †
k

)−1
F̂†

k

=Y †
k − AP0 +E†

k

(
X †

k −Y †
k

)−1
F†

k =Y †
k+1 − AP0.
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□

So we see that it is not trivial to generate versions of these algorithms that enable

refinement of arbitrary initializations of the solution. The results above are both not novel

in the sense that they are known for Riccati equations, what is new is the presentation

and proof for the specific case of our UQME. That we can provide a version of SF1 in

Algorithm 5 that can operate on arbitrary initializations is all the more interesting as it

can potentially profit in terms of increased accuracy and reduced computation time from

initializations that are close to the stable solvent P that is being sought. We will confirm

this and the result from Theorem 3 that Algorithm 6 does not possess the same potential.

4.3. Accuracy

We use the practical forward error bounds of Meyer-Gohde (2023a) to assess the

accuracy of a computed solution P̂∥∥P − P̂
∥∥

F
∥P∥F︸ ︷︷ ︸

Forward Error

≤

∥∥∥H−1
P̂

vec
(
RP̂

)∥∥∥
2∥∥P̂

∥∥
F︸ ︷︷ ︸

Forward Error Bound 1

≤
∥∥∥H−1

P̂

∥∥∥
2

∥∥RP̂
∥∥

F∥∥P̂
∥∥

F︸ ︷︷ ︸
Forward Error Bound 2

(71)

where the residual of the UQME is RP̂ = AP̂2 +BP̂ +C and HP̂ = Iny ⊗
(
AP̂ +B

)+ P̂ ′⊗ A.

A key component in assessing the conditioning of the problem following is Stewart’s (1971)

separation function, see also Kågström (1994), Kågström and Poromaa (1996), and Chen

and Lv (2018), given by

sep
[(

A, AP̂ +B
)
,
(
I,−P̂

)]= min
∥X∥F=1

∥∥AX P̂ + (
AP̂ +B

)
X

∥∥
F (72)

= min
∥vec(X )∥2=1

∥∥HP̂vec(X )
∥∥

2 (73)

=σmin
(
HP̂

)≤min
∣∣λ(

A, AP̂ +B
)−λ(

P̂
)∣∣ (74)

where λ
(
A, AP̂ +B

)
is the set of (generalized) eigenvalues or the spectrum of the pencil(

A, AP̂ +B
)

(hence λ
(
P̂

)
is thus the spectrum of P̂). As emphasized by Meyer-Gohde

(2023a) the separation between the two pencils - the smallest singular value of HP̂ -

extends the conditioning number from standard linear equations to structured problems

like our UQME. The a posteriori condition number for the matrix quadratic is given by

sep−1 [(
A, AP̂ +B

)
,
(
I,−P̂

)]= ∥∥∥H−1
P̂

∥∥∥
2
=σmin

(
HP̂

)−1, which can be arbitrarily larger than

the inverse of the minimal distance between the spectra of the pencils
(
A, AP̂ +B

)
,
(
I,−P̂

)
.

This inverse of the separation relates an upper bound to the forward error directly to the

backward error, like the condition number for a standard linear system, and Meyer-Gohde
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(2023a) shows that this backward error can also differ arbitrarily from the residual,

another frequent measure used in the literature. The tighter bound accounts for the

structure of the problem more carefully, considering the linear operator HP̂ and the

residual RP̂ jointly, but for larger models can be computationally prohibitive. Hence the

looser bound, besides linking difficulties in alternative measures via the separation and

backward errors directly, is also practical, albeit pessimistic, for large scale DSGE models.

5. APPLICATIONS

We run through two different sets of experiments to assess the SDAs - in the model

of Smets and Wouters (2007) and on the suite of models in the Macroeconomic Model

Data Base (MMB) (see Wieland, Cwik, Müller, Schmidt, and Wolters, 2012; Wieland,

Afanasyeva, Kuete, and Yoo, 2016).10 These two sets enable us to assess the different

methods firstly in a specific, policy relevant model and then also in non-model specific

manner, to give us insight on how robust our results are across models. Additionally,

these are exactly the experiments run in Meyer-Gohde and Saecker (2022), Meyer-Gohde

(2023b), and Binder and Meyer-Gohde (2023) to maximize the comparability with all the

different algorithms compared there. We will focus here on comparing our algorithms

above with Dynare’s QZ-based method,11 Dynare’s Cyclic and Logarithmic reduction

methods, the baseline Newton method from Meyer-Gohde and Saecker (2022), and the

baseline Bernoulli method from Meyer-Gohde (2023b).12 We assess the performance

with respect to the accuracy, computational time, and convergence to the stable solvent.

We examine the consequences of initializing both from zero matrix (an uninformed

initialization of a stable solvent), or the standard initialization for the reduction and

structure preserving doubling algorithms, and Dynare’s QZ solution.

10A model comparison initiative at the Institute for Monetary and Financial Stability (IMFS), see

http://www.macromodelbase.com.
11See Villemot (2011).
12Additionally, note that we follow Dynare’s QZ and reduce the dimensionality of the problem for our

implementations of the doubling algorithms SF1 and SF2 by grouping variables and structuring the matrix

quadratic according to the classification of “static”, “purely forward”, “purely backward looking”, and “mixed”

variables. The details are in the online appendix and Meyer-Gohde and Saecker (2022). We take Dynare’s

reduction algorithms “as is”.

http://www.macromodelbase.com
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5.1. Smets and Wouters’s (2007) Model

We start with Smets and Wouters’s (2007) medium scale, estimated DSGE model that

is a benchmark for policy analysis. They estimate and analyze a New Keynesian model

with US data featuring the usual frictions, sticky prices and wages, inflation indexation,

consumption habit formation as well as production frictions concerning investment,

capital and fixed costs. For our purposes, the following log-linearized monetary policy rule

is particularly important, as we will compare the accuracy of different solution methods

when solving under alternate, but nearby parameterizations - specifically parameter

values in the following Taylor rule

r t = ρr t−1 + (1−ρ)(rππt + rY (yt − yp
t ))+ r∆y((yt − yp

t )− (yt−1 − yp
t−1))+εr

t , (75)

where r t is the interest rate, πt inflation, and (yt − yp
t ) the current output gap. The

parameters rπ, rY and r∆y describing the sensitivity of the interest rate to each of these

variables, and also the change in the output gap, and ρ measures interest rate smoothing.

The rule is completed with an AR(1) monetary policy shock, εr
t , which is assumed to have

an iid normal innovation. The model parameters are estimated using Bayesian methods

on seven macroeconomic time series from the US economy to estimate, the resulting

posterior produces out-of-sample forecasting performance that is inline with reduced form

(B)VAR models.

The results for the posterior mode of Smets and Wouters (2007) can be found in table

1. Compared with the QZ algorithm, both the doubling algorithms, SF1 and SF2, along

with the reduction algorithms already implemented in Dynare, perform very comparably.

This is in contrast to the baseline Newton algorithm of Meyer-Gohde and Saecker (2022)

that fails to converge to the stable solvent (there is no guarantee that this algorithm will

converge to a particular solvent, see their discussion and the varieties and extensions

of this baseline algorithm that also perform more favorably). The baseline Bernoulli

algorithm of Meyer-Gohde (2023b) gives a tradeoff repeated throughout that analysis:

generally more accurate, but often about an order of magnitude slower, than QZ. This is

not the case with our doubling algorithms, they are as fast or faster than QZ and provide

an order of magnitude more of accuracy. All four of the algorithms explored here, doubling

and reduction, require about 10 iterations to converge and provide solutions that do not

differ in an economic sense from the solution provided by QZ.
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Method Relative Performance Forward Errors Iterations

Run Time Max Abs. Diff. Bound 1 Bound 2

Dynare (QZ) 7.2e-04 — 5.2e-14 2.3e-11 1

Dynare (Cyclic Reduction) 0.92 7.4e-13 2.9e-15 1e-11 10

Dynare (Log Reduction) 1.3 1e-12 2.3e-14 1.5e-11 9

Baseline Newton 17 1.1e+02 1.3e-14 3.2e-09 99

Baseline Bernoulli 14 7.7e-13 3.7e-14 2.6e-11 4.4e+02

Doubling SF1 1 7.8e-13 8.6e-15 4.9e-12 10

Doubling SF2 0.85 7e-13 8.1e-15 4.9e-12 10

TABLE 1. Results: Model of Smets and Wouters (2007), Posterior Mode

• For Dynare (QZ), refer to Adjemian, Bastani, Juillard, Mihoubi, Perendia, Ratto, and Villemot

(2011).

• Run Time for Dynare (QZ) in seconds, for all others, run time relative to Dynare.

• Max Abs. Diff. measures the largest absolute difference in the computed P of each method from

the P produced by Dynare.

• Forward error 1 and 2 are the upper bounds for the true forward error, see (71).

Method Relative Performance Forward Errors Iterations

Run Time Variance πt Bound 1 Bound 2

Dynare (QZ) 0.0019 0.28 3.5e-13 4.6 1

Baseline Newton 19 0.45 3.9e-17 0.00058 4

Baseline Bernoulli 13 0.39 1.2e-15 0.018 90

Doubling SF1 5.6 0.33 6.6e-17 0.0009 11

Doubling SF2 3.2 0.48 6.6e-14 0.86 12

TABLE 2. Results: Model of Smets and Wouters (2007), Numerically Problematic

Parameterization

• For Dynare, refer to Adjemian, Bastani, Juillard, Mihoubi, Perendia, Ratto, and Villemot (2011).

• Run Time for Dynare in seconds, for all others, run time relative to Dynare.

• Variance πt gives the associated value for the population or theoretical variance of inflation - note

that two algorithms did not converge to a stable P and hence the variance could not be calculated

for them.

• Forward error 1 and 2 are the upper bounds for the true forward error, see (71).
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In table 2 we examine the different methods as solution refinement techniques, by

parameterizing the model of Smets and Wouters (2007) to an economically relevant nu-

merical instability following Meyer-Gohde (2023a) and initializing the different methods

at the Dynare QZ solution. Note that the reduction methods implemented in Dynare

cannot work with an initial value for the solution, so we compare the solution provided

by Dynare’s QZ with the doubling refinement versions of SF1 and SF2 as well as Meyer-

Gohde and Saecker’s (2022) Newton and Meyer-Gohde’s (2023b) Bernoulli method. First,

consistent with theorem 3, the SF2 algorithm does not appear to be comparable with

the Newton or SF1 algorithm, converging to a solution that has a much less substantial

improvement in accuracy. The Newton algorithm provides substantially more accuracy

than the Bernoulli algorithm but at a much higher additional cost, echoing a tradeoff

mentioned above. The SF1 algorithm breaks through this barrier, providing roughly the

same level of accuracy as the Newton algorithm at half the additional computational

costs of the Bernoulli algorithm. That the Newton method is so time consuming despite

the relative few number of iterations performed emphasizes the computational intensity

of the Newton step that is not shared by the doubling algorithms - the former involves

solving structured linear (Sylvester) equations whereas the latter solve standard systems

of linear equations. Notice that the resulting implied variances of inflation, πt, differ on

an economically relevant scale. That is, the more accurate methods all agree that the QZ

solution understates the variance of inflation by up to about one-half.13

We now take this refinement perspective and apply the different algorithms to solve

iteratively for different parameterizations of the Taylor rule in the final experiment with

the model of Smets and Wouters (2007). We would like to establish whether solutions

from previous, nearby parameterizations can be used to efficiently initialize the doubling

methods similarly to the experiment above with the QZ solution as the initial guess. To

that end, the experiment iterates through a grid of 10×10 for the response in the Taylor

rule to inflation and the output gap by varying the size of the interval in the grid - setting

13Note that the different refinements still do not entirely agree on the actual level of the variance, this

parametrization is very poorly conditioned - see Meyer-Gohde (2023a) - and hence very sensitive to small

differences in the solutions. Additionally, the same method, Dynare’s native theoretical moment calculator,

is used with all methods to calculate the variance. Given the warnings of ill condition, a researcher would

be well advised to calculate the moment with each moment more carefully - we do not do so as we want

to proceed uniformly with the results from each method and, hence, follow the choice of method by QZ in

Dynare.
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rπ ∈ [1.5,1.5 (1+10−x)] and rY ∈ [0.125,0.125 (1+10−x)], where x ∈ [−1,8] (Smets and

Wouters (2007) calibrate them to rπ = 2.0443 and rY = 0.0882). The algorithm iterates

through the two-dimensional grid taking the solution from the previous parameterization

as the initialization for the next iteration. A decrease in the spacing between the 100 grid

points thus increases the precision of the initialization.

(A) Forward Error 1 (B) Forward Error 2

(C) Computation Time per Grid Point, All methods (D) Computation Time per Grid Point, Subset

FIGURE 1. Forward Errors and Computation Time per Grid Point for different

parameterizations of the model by Smets and Wouters (2007).

Figures 1a and 1b plot the upper forward error bounds 1 and 2 against the grid size,

log10 scale on both axes. Figures 1c and 1d plot the computation per grid point against

the number of grid points, log10 scale on both axes.

Figure 1 summarizes the experiment graphically. Firstly, the two top panels show

that the accuracy of the algorithms is independent of the grid spacing (and, hence, how

close the parameter steps are from each other), with the exception being the baseline

Bernoulli method that displays a significant drop in forward errors that coincides with
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the drop in computation time in the lower half - at a close enough parameterization,

the Bernoulli algorithm starts with a guess from the previous parameterization that is

accurate beyond the convergence threshold and the single iteration that is performed

provides substantial (relative to more widely spaced grids) accuracy gains. In terms of

their relative accuracies, the Newton is the most and the Bernoulli is generally (that

is, except at the closely spaced grids) the least accurate. All of the algorithms here, the

doubling and reduction algorithms, are more accurate than QZ, with the cyclic reduction

and SF2 algorithms roughly the same and close to Newton, then the log reduction follows,

with the SF1 doubling algorithm between QZ and the log reduction algorithm. As to be

expected from theorem 3, the SF2 doubling algorithm does not systematically profit in

terms of reduced computation time as the parameter iterations get closer and closer as

the Newton and Bernoulli algorithms do. The SF1 doubling algorithm, in contrast, does

profit with a clear downward trend in the computation time as can be seen in figure 1d.

This downward trend is hardly recognizable in figure 1d when the Newton and Bernoulli

algorithms are also plotted highlighting that this effect is far less significant for the SF1

doubling algorithm than for the Newton and Bernoulli algorithms.

5.2. MMB Suite Comparison

We use models from the Macroeconomic Model Data Base (MMB) to investigate the

properties of the structure-preserving doubling algorithms. This gives us the advantage

to investigate the properties of the algorithms in a model-robust fashion. We use version

3.1 which contains 151 different models, ranging from small scale to large scale models.

The latter include estimated models of the US, EU, and multi-country economies. We

use the algorithm on a subset of models appropriate for reproduction14 for which their

differing sizes are visible in figure 2.

Examining the models of the MMB by comparing the doubling methods to the QZ and

various alternatives, we solve each applicable model in the MMB 100 times, initializing

the methods with a zero matrix and present the results as the average of the middle three

quintiles across runs to minimize the effects of outliers.

Table 3 summarizes the results. As noted in Meyer-Gohde and Saecker (2022) and

Meyer-Gohde (2023b), the Newton method is somewhat slower but far more accurate

than QZ when it converges to the stable solution, yet it does this in its baseline form only

14Currently, this is 99 models. Some of the models in the database are deterministic and/or use nonlinear

or non-rational (e.g., adaptive) expectations and, hence, are not appropriate for our comparison here.
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FIGURE 2. Histogram over the number of variables for the 99 MMB models

Figure 2 plots the number of model variables over the amount of MMB models. Currently

the total amount of models considered is 99.

slightly more than half the time and the baseline Bernoulli algorithm always converges

to the unique stable solution, but does so more slowly than QZ at about the same level

of accuracy. The cyclic reduction method is an intermediate case, converging to the

stable solution for about 3/4 of the models, at generally comparable computation time

and somewhat higher accuracy than QZ. The logarithmic reduction is an improvement,

converging for almost all of the models, and doing so at about the same speed and

accuracy as the cyclic reduction method. In terms of the doubling algorithms, they

converge more frequently than even the logarithmic reduction methods, but still not for

all models. The methods fail to converge when there is a breakdown of nonsingularity

of the coefficient matrices in the recursion that need to be inverted. As we will see in

the next experiment, this can be overcome at least for the SF1 doubling algorithm by an

appropriate (re)initialization of the algorithm. The SF2 doubling algorithm on average

outperforms QZ both in terms of speed and accuracy, although not for every model as

the max or worst case shows (and again with the caveat that it does not successfully

converge for 7 of the 99 models). The SF1 algorithm is not quite as fast at the median

but has a far lower worst case computation time. This average performance of SF2 being

faster than SF1 is consistent with the former inverting only one matrix, X †
k −Y †

k - see

Algorithm 2, whereas the latter needs to invert two, I−Yk Xk and I−XkYk - see Algorithm

1. Comparing the errors of the two doubling algorithms, SF2 usually has the lower worst

case error upper bound, although SF1 has the most accurate best case model. In sum, the

doubling algorithms (less so the reduction algorithms) perform very favorably relative to

QZ.
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(A) Forward Error 1, Relative to Dynare (B) Forward Error 2, Relative to Dynare

(C) Forward Error 1 (D) Forward Error 2

FIGURE 3. Distribution of forward error bounds relative to Dynare for the Macroe-

conomic Model Data Base (MMB)

Figures 3a, 3b plot the distribution of model solutions against the upper bounds of the

forward error 1 and 2 for all algorithms, log10 scale on the x axis, 99 MMB models (starting

guess: zero matrix).

A graphical overview of the entire distribution of forward errors is plotted in figure 3,

the upper row relative to QZ and the lower in absolute terms. Meyer-Gohde and Saecker’s

(2022) Newton algorithm is the most accurate with a clearly left shifted distribution

relative to Dynare, with a mode improvement of about one order of magnitude for both

forward error measures, and Meyer-Gohde’s (2023b) Bernoulli method the least with a

clearly right shifted distribution relative to QZ for both error measures. All of the methods

here, reduction and doubling, lie in between but with modes and medians all to the left of

QZ. While they are all very comparable, the SF2 algorithm has almost its entire mass to

the left of Dynare and the cyclic reduction algorithm is right skewed with a substantial
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mass to the right of Dynare. The lower panels plot the absolute values and the tighter

bound, forward error 1 on the left, show that almost all of the models have errors less

than 1e-10 and the accuracy of the Newton method is also clear with a substantial mass

of upper bounds on forward error inside machine precision and all mass essentially below

e-12. The lower right panel shows how much the weaker bound can differ which must be

weighed against its lower computational intensity, see Meyer-Gohde (2023a). Nonetheless,

it appears that all models in the MMB were solved with acceptable accuracy and the SF2

doubling algorithm is to be preferred among the algorithms here.

(A) Forward Error 1, All Methods (B) Forward Error 2, All Methods

(C) SDA SF1 (D) SDA SF2

FIGURE 4. Forward Errors and Computation Time Relative to Dynare, log10

scales, for the Macroeconomic Model Data Base (MMB)

Figure 4 provides a model-by-model comparison of the different algorithms’ performance

relative to QZ. All four panels express computation times and forward errors relative to

Dynare on a log scale - hence a negative value in a dimension means the algorithm is

more accurate or computationally efficient than QZ. In the top panels all of the methods
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are plotted using the two different measures of the forward error. First, recognize that the

Bernoulli method is sometimes more and sometimes less accurate than QZ but usually

slower (higher computation time), whereas the baseline Newton method is generally more

accurate but usually slightly slower than QZ. The doubling and reduction algorithms

require similar computation times as QZ (almost always within one half an order of

magnitude slower/faster) but are generally more accurate. The doubling algorithms are

more accurate than the reduction algorithms (notice the outlier along the x axis of the

reduction algorithms with more than three orders of magnitude higher forward errors

than QZ) and the SF2 doubling algorithm is the most accurate of the doubling algorithms

as can be seen by comparing the lower two panels - visually, this algorithm is on average

slightly faster than QZ and provides an order of magnitude more accuracy.

Figure 5 continues the model-by-model comparison of the different algorithms’ perfor-

mance relative to QZ, but now with a focus on the effect of model size, measured by the

number of state or backward-looking variables, on the algorithms. The top tow panels

give the accuracy of the different methods for the different models plotted against the di-

mension of the endogenous state. There is not a visually compelling correlation - although

for very large models, the reduction and doubling algorithms like the Newton algorithm

appear to perform better than QZ. For computational times the story is different: the

lower panels plot the computational time against the number of state variables and a

clear downward trend or negative correlation in particular for the doubling algorithms

is obvious. In sum, for the largest models in the MMB, our doubling algorithms provide

about two orders of magnitude more accuracy at about one tenth the computation time.

To assess the potential for improving on solutions, we repeat the exercise, but now

initialize with the solution provided by QZ, see table 4. Note that in contrast to table

3, now the SF1 doubling algorithm, along with the baseline Newton method, converges

successfully to the unique stable solution in all models. Consistent with theorem 3, the

SF2 doubling algorithm, however, does not and continues to converge or not for the same

models as under the initialization with the zero matrix.

Both the Bernoulli and Newton methods run one iteration, and the later generally

achieves a greater increase in accuracy albeit at a higher computation cost due to the

computational intensity of the Newton step. The SF1 doubling algorithm runs through

multiple iterations, ending up being slightly faster but slightly less accurate than the

Newton method at the median. Far more impressive here are the max or worst-case
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(A) Forward Error 1, Relative to Dynare (B) Forward Error 2, Relative to Dynare

(C) Computation Time, Relative to Dynare (D) Forward Error 1, Relative to Dynare

FIGURE 5. Forward Errors, Computation Time and Number of State Variables for

the Macroeconomic Model Data Base (MMB)

Figures 5a, 5b plot the upper bounds of the forward error 1 and 2 against model size

(number of state or backward looking variables) for all methods, log10 scale on both axes.

outcomes, with SF1 doubling at worst adding on an additional 1.9 times QZ computation

cost and 3.1 times the forward error. The worst case Newton computation costs are an

additional 330 times the QZ initial time and the SF2 doubling algorithm has at worst a

forward error bound 53 times that of QZ. We conclude that the SF1 doubling algorithm

ought to be preferred as a solution refinement method, usually providing significant

accuracy gains at low additional computation costs that is robust even in the worst case

relative to alternatives.

Figure 6, like figure 3 but now initialized at the QZ solution, provides an overview of

the entire distribution of forward errors, the upper row relative to those from Dynare’s

QZ method and the lower in absolute terms. It is apparent that the baseline Bernoulli
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(A) Forward Error 1, Relative to Dynare (B) Forward Error 2, Relative to Dynare

(C) Forward Error 1 (D) Forward Error 2

FIGURE 6. Distribution of forward error bounds relative to Dynare for the Macroe-

conomic Model Data Base (MMB)

Figures 6a, 6b plot the distribution of model solutions against the upper bounds of the

forward error 1 and 2 for all algorithms, log10 scale on the x axis, 99 MMB models (starting

guess: solution Dynare(QZ)).

algorithm provides only a marginal improvement on the QZ solution. While this should be

tempered with the observation that only one Bernoulli iteration was performed, the same

is true for the Newton algorithm. The doubling algorithms perform favorably, with both

displaying left shifted distributions of error bounds relative to QZ. Taken together with

the results from table 4, the SF1 doubling algorithm can be considered an ideal solution

refinement algorithm across a wide variety of models.

6. CONCLUSION

We have introduced and developed doubling algorithms for solving linear DSGE models

as alternatives to QZ methods (Moler and Stewart, 1973; Golub and van Loan, 2013). We
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connect these to the related reduction algorithms implemented, albeit silently, in Dynare.

The doubling algorithms have theoretical convergence results that promise quadratic

convergence rates like the Newton based methods of Meyer-Gohde and Saecker (2022) as

well as convergence to the stable solution as with the Bernoulli methods of Meyer-Gohde

(2023b).

In a set of experiments using the Smets and Wouters (2007) model and the suite of

models in the Macroeconomic Model Data Base (MMB), we find that both the doubling

algorithms perform very favorably relative to QZ, with generally more accurate solutions

produced using less computational time. The results are not entirely clear cut, as there

are outliers in terms of accuracy, computational time, and convergence. We extended

the doubling algorithms from the literature to operate off of user defined initializations

and provide convincing evidence that the SF1 doubling algorithm can reliably provide

low cost, high accuracy refinements of existing solutions. That is, in the absence of any

specific considerations, the SF1 doubling algorithm should be the algorithm of choice of

researchers looking to improve the accuracy of a solution produced by another method.



38 HUBER, MEYER-GOHDE, AND SAECKER

REFERENCES

ADJEMIAN, S., H. BASTANI, M. JUILLARD, F. MIHOUBI, G. PERENDIA, M. RATTO,

AND S. VILLEMOT (2011): “Dynare: Reference Manual, Version 4,” Dynare Working

Papers 1, CEPREMAP.

ANDERSON, B., AND J. MOORE (1979): Optimal Filtering. Prentice-Hall.

ANDERSON, E. W., E. R. MCGRATTAN, L. P. HANSEN, AND T. J. SARGENT (1996):

“Mechanics of forming and estimating dynamic linear economies,” vol. 1 of Handbook of

Computational Economics, chap. 4, pp. 171–252. Elsevier.

ANDERSON, G. S., A. LEVIN, AND E. SWANSON (2006): “Higher-Order Perturbation

Solutions to Dynamic Discrete-Time Rational Expectations Models,” Discussion Paper

2006-01, Federal Reserve Bank of San Francisco Working Paper Series.

ANDERSON, G. S., AND G. MOORE (1985): “A Linear Algebraic Procedure for Solving

Linear Perfect Foresight Models,” Economics Letters, 17(3), 247–252.

BINDER, M., AND A. MEYER-GOHDE (2023): “Revisiting the Fully Recursive Computa-

tion of Multivariate Linear Rational Expectations Models,” mimeo, Goethe University

Frankfurt, Institute for Monetary and Financial Stability (IMFS).

BINI, D., AND B. MEINI (1996): “On the Solution of a Nonlinear Matrix Equation Arising

in Queueing Problems,” SIAM Journal on Matrix Analysis and Applications, 17(4),

906–926.

BINI, D. A., B. IANNAZZO, AND B. MEINI (2011): Numerical solution of algebraic Riccati

equations. SIAM.

BINI, D. A., G. LATOUCHE, AND B. MEINI (2005): Numerical Methods for Structured

Markov Chains. Oxford University Press.

BINI, D. A., AND B. MEINI (2023): “A defect-correction algorithm for quadratic ma-

trix equations, with applications to quasi-Toeplitz matrices,” Linear and Multilinear

Algebra, pp. 1–16.

BINI, D. A., B. MEINI, AND F. POLONI (2008): “From Algebraic Riccati equations to

unilateral quadratic matrix equations: old and new algorithms,” in Numerical Methods

for Structured Markov Chains, ed. by D. Bini, B. Meini, V. Ramaswami, M.-A. Remiche,

and P. Taylor, vol. 7461 of Dagstuhl Seminar Proceedings (DagSemProc), pp. 1–28.

Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

BLANCHARD, O. J., AND C. M. KAHN (1980): “The Solution of Linear Difference Models

under Rational Expectations,” Econometrica, 48(5), 1305–1311.



SOLVING LINEAR DSGE MODELS WITH STRUCTURE PRESERVING DOUBLING METHODS 39

CHEN, X. S., AND P. LV (2018): “On estimating the separation between (A,B) and (C,D)

associated with the generalized Sylvester equation AX D−BXC = E,” Journal of Com-

putational and Applied Mathematics, 330, 128–140.

CHIANG, C.-Y., E. K.-W. CHU, C.-H. GUO, T.-M. HUANG, W.-W. LIN, AND S.-F. XU

(2009): “Convergence analysis of the doubling algorithm for several nonlinear matrix

equations in the critical case,” SIAM Journal on Matrix Analysis and Applications,

31(2), 227–247.

CHIANG, C.-Y., H.-Y. FAN, AND W.-W. LIN (2010): “A structured doubling algorithm for

discrete-time algebraic Riccati equations with singular control weighting matrices,”

Taiwanese Journal of Mathematics, 14(3A), 933–954.

GOLUB, G. H., AND C. F. VAN LOAN (2013): Matrix Computations. The Johns Hopkins

University Press, fourth edn.

GUO, X.-X., W.-W. LIN, AND S.-F. XU (2006): “A structure-preserving doubling algorithm

for nonsymmetric algebraic Riccati equation,” Numerische Mathematik, 103(3), 393–

412.

HAMMARLING, S., C. J. MUNRO, AND F. TISSEUR (2013): “An Algorithm for the Complete

Solution of Quadratic Eigenvalue Problems,” ACM Transactions On Mathematical

Software, 39(3), 18:1–18:19.

HANSEN, L. P., AND T. J. SARGENT (2014): Recursive Models of Dynamic Linear

Economies. Princeton University Press, Princeton.

HARVEY, A. C. (1990): Forecasting, Structural Time Series Models and the Kalman Filter.

Cambridge University Press.

HIGHAM, N. J., AND H.-M. KIM (2000): “Numerical Analysis of a Quadratic Matrix

Equation,” IMA Journal of Numerical Analysis, 20, 499–519.

HUANG, T.-M., R.-C. LI, AND W.-W. LIN (2018): Structure-Preserving Doubling Algo-

rithms for Nonlinear Matrix Equations. Society for Industrial and Applied Mathematics.

KLEIN, P. (2000): “Using the Generalized Schur Form to Solve a Multivariate Linear

Rational Expectations Model,” Journal of Economic Dynamics and Control, 24(10),

1405–1423.

KÅGSTRÖM, B. (1994): “A Perturbation Analysis of the Generalized Sylvester Equation

(AR−LB,DR−LE)= (C,F),” SIAM Journal on Matrix Analysis and Applications, 15(4),

1045–1060.



40 HUBER, MEYER-GOHDE, AND SAECKER

KÅGSTRÖM, B., AND P. POROMAA (1996): “LAPACK-style algorithms and software for

solving the generalized Sylvester equation and estimating the separation between

regular matrix pairs,” ACM Transactions on Mathematical Software (TOMS), 22(1),

78–103.

LAN, H., AND A. MEYER-GOHDE (2014): “Solvability of Perturbation Solutions in DSGE

Models,” Journal of Economic Dynamics and Control, 45, 366–388.

LATOUCHE, G., AND V. RAMASWAMI (1993): “A Logarithmic Reduction Algorithm for

Quasi-Birth-Death Processes,” Journal of Applied Probability, 30(3), 650–674.

MCGRATTAN, E. R. (1990): “Solving the Stochastic Growth Model by Linear-Quadratic

Approximation,” Journal of Business ßEconomic Statistics, 8(1), 41–44.

MEHRMANN, V., AND E. TAN (1988): “Defect correction method for the solution of algebraic

Riccati equations,” IEEE transactions on automatic control, 33(7), 695–698.

MEYER-GOHDE, A. (2022): “Backward Error and Condition Number Analysis of Linear

DSGE Solutions,” mimeo, Goethe University Frankfurt, Institute for Monetary and

Financial Stability (IMFS).

(2023a): “Numerical Stability Analysis of Linear DSGE Models - Backward Errors,

Forward Errors and Condition Numbers,” IMFS Working Paper Series 193, Goethe

University Frankfurt, Institute for Monetary and Financial Stability (IMFS).

(2023b): “Solving Linear DSGE Models with Bernoulli Methods,” IMFS Working

Paper Series 182, Goethe University Frankfurt, Institute for Monetary and Financial

Stability (IMFS).

MEYER-GOHDE, A., AND I. PIGKOU (2023): “Pencils, Scaling, and Deflating: Improving

the Accuracy of DSGE Perturbations,” mimeo, Goethe University Frankfurt, Institute

for Monetary and Financial Stability (IMFS).

MEYER-GOHDE, A., AND J. SAECKER (2022): “Solving Linear DSGE Models with Newton

Methods,” IMFS Working Paper Series 174, Goethe University Frankfurt, Institute for

Monetary and Financial Stability (IMFS).

MOLER, C. B., AND G. W. STEWART (1973): “An Algorithm for Generalized Matrix

Eigenvalue Problems,” SIAM Journal on Numerical Analysis, 10(2), 241–256.

POLONI, F. (2020): “Iterative and doubling algorithms for Riccati-type matrix equations:

A comparative introduction,” GAMM-Mitteilungen, 43(4).

SIMS, C. A. (2001): “Solving Linear Rational Expectations Models,” Computational

Economics, 20(1-2), 1–20.



SOLVING LINEAR DSGE MODELS WITH STRUCTURE PRESERVING DOUBLING METHODS 41

SMETS, F., AND R. WOUTERS (2007): “Shocks and Frictions in US Business Cycles: A

Bayesian DSGE Approach,” The American Economic Review, 97(3), 586–606.

STEWART, G. W. (1971): “Error Bounds for Approximate Invariant Subspaces of Closed

Linear Operators,” SIAM Journal on Numerical Analysis, 8(4), 796–808.

UHLIG, H. (1999): “A Toolkit for Analysing Nonlinear Dynamic Stochastic Models Easily,”

in Computational Methods for the Study of Dynamic Economies, ed. by R. Marimon,

and A. Scott, chap. 3, pp. 30–61. Oxford University Press.

VILLEMOT, S. (2011): “Solving Rational Expectations Models at First Order: What Dynare

Does,” Dynare Working Papers 2, CEPREMAP.

WIELAND, V., E. AFANASYEVA, M. KUETE, AND J. YOO (2016): “New Methods for Macro-

Financial Model Comparison and Policy Analysis,” in Handbook of Macroeconomics, ed.

by J. B. Taylor, and H. Uhlig, vol. 2 of Handbook of Macroeconomics, pp. 1241–1319.

Elsevier.

WIELAND, V., T. CWIK, G. J. MÜLLER, S. SCHMIDT, AND M. WOLTERS (2012): “A new

comparative approach to macroeconomic modeling and policy analysis,” Journal of

Economic Behavior & Organization, 83(3), 523–541.



42 HUBER, MEYER-GOHDE, AND SAECKER

APPENDIX

6.1. Detailed Dynare Topology

Here we summarize the details in the matrix quadratic that follows from the typology of variables from

Dynare as laid out in Villemot (2011). See Meyer-Gohde and Saecker (2022) for details.

Subdividing the system of equations in accordance with the QR decomposition yields



ns n−− nm n++

ns 0 0

n−− 0 0

nm 0 0

n++ 0 0

Ă+
ns×n+

Ã+
nd×n+


︸ ︷︷ ︸

A
n×n

P2
n×n

+



ns n−− nm n++

ns Ă0s

n−− 0

nm 0

n++ 0

Ă0d

ns×nd

Ã0

nd×nd


︸ ︷︷ ︸

B
n×n

P
n×n

+



ns n−− nm n++

ns 0 0

n−− 0 0

nm 0 0

n++ 0 0

Ă−
ns×n−

Ã−
nd×n−


︸ ︷︷ ︸

C
n×n

= 0
n×n

where nd is the number of dynamic variables, the sum of number of purely backward-looking, n−−, mixed

nm, and purely forward-looking variables, n++. The number of forward-looking variables, n+, is the sum of

the number of mixed, nm, and purely forward-looking variables, n++, and the number of backward-looking

variables, n−, is the sum of the number of purely backward-looking, n−− and mixed variables nm. Hence,

the number of endogenous variables is the sum of the number of static, ns, and dynamic variables, nd , or

the sum of the number of static, ns, purely backward-looking, n−−, mixed nm, and purely forward-looking

variables, n++. The dimensions satisfy the following

nd = n−−+nm +n++, n+ = nm +n++, n− = n−−+nm, n = ns +nd = ns +n−−+nm +n++

The transition matrix, P, from (4) that solves the matrix equation (5) can be subdivided in accordance to

Dynare’s typology as

P=



ns n−− nm n++

ns Ps,s Ps,−− Ps,m Ps,++

n−− P−−,s P−−,−− P−−,m P−−,++

nm Pm,s Pm,−− Pm,m Pm,++

n++ P++,s P++,−− P++,m P++,++

=
[ ns n−− nm n++

n P•,s P•,−− P•,m P•,++
]
=



n

ns Ps,•

n−− P−−,•

nm Pm,•

n++ P++,•


The matrix quadratic can be expressed as

M( P
n×n

)= A
n×n

P2 + B
n×n

P+ C
n×n

= (
AP+B

)︸ ︷︷ ︸
≡G

P+C

For a solvent P of the matrix quadratic, taking the structure of C from the Dynare typology above into

account yields

M(P)= 0=GP+C
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=G
[ ns n−− nm n++

n P•,s P•,−− P•,m P•,++
]
+



ns n−− nm n++

ns 0 0

n−− 0 0

nm 0 0

n++ 0 0

Ă−
ns×n−

Ã−
nd×n−


Following Meyer-Gohde and Saecker (2022), who apply corollary 4.5 of Lan and Meyer-Gohde (2014),

if P is the unique solvent of M(P) stable with respect to the closed unit circle, G has full rank and

hence the columns of P associated with nonzero columns in C, the static and forward-looking vari-

ables are zero → P•,s = 0
n×ns

, P•,++ = 0
n×n++, whence P is P =

[ ns n−− nm n++

n 0 P•,−− P•,m 0
]

and

M(P)=
[

0
n×ns

M(P)−−
n×n−− M(P)m

n×nm
0

n×n++

]
. Consequentially, the first ns rows of the matrix quadratic, taking



n

n−− P−−,•

nm Pm,•

n++ P++,•

 as given, yield
[ n−− nm

ns Ps,−− Ps,m

]
as

[ n−− nm

ns Ps,−− Ps,m

]
=−

[
Ă0s

ns×ns

]−1

 Ă+
ns×n+


n−− nm

nm Pm,−− Pm,m

n++ P++,−− P++,m

 
n−− nm

n−− P−−,−− P−−,m

nm Pm,−− Pm,m



+ Ă0d

ns×nd



n−− nm

n−− P−−,−− P−−,m

nm Pm,−− Pm,m

n++ P++,−− P++,m

+ Ă−
ns×n−



and the first ns rows of P are Ps,•
ns×n

=
[ ns n−− nm n++

ns 0 Ps,−− Ps,m 0
]
.

The last nd columns and rows of P solve the reduced matrix quadratic equation



n−− nm n++

n−− 0

nm 0

n++ 0

Ã+
nd×n+




n−− nm n++

n−− P−−,−− P−−,m P−−,++

nm Pm,−− Pm,m Pm,++

n++ P++,−− P++,m P++,++


︸ ︷︷ ︸

P̃
nd×nd

· P̃
nd×nd

+ Ã0

nd×nd
P̃

nd×nd

+



n−− nm n++

n−− 0

nm 0

n++ 0

Ã−
nd×n−


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=M̃(P̃)
nd×nd

=
[ n−− nm n++

nd M̃(P̃)−− M̃(P̃)m 0
]
= 0

nd×nd

Recalling that P•,++ = 0
n×n++, P̃ can be reduced and two submatrices P and P̂ defined via

P̃=



n−− nm n++

n−− P−−,−− P−−,m P−−,++

nm Pm,−− Pm,m Pm,++

n++ P++,−− P++,m P++,++

=



n−− nm n++

n−− P−−,−− P−−,m 0

nm Pm,−− Pm,m 0

n++ P++,−− P++,m 0

≡



n−− nm n++

n−− 0

nm 0

n++ 0

P
n−−×n−

P̂
n+×n−



where P
n−−×n− ≡

[ n−− nm

n−− P−−,−− P−−,m

]
and P̂

n+×n− ≡


n−− nm

nm Pm,−− Pm,m

n++ P++,−− P++,m

 allow the matrix quadratic to be

written as 



n−− nm n++

n−− 0

nm 0

n++ 0

Ã+
nd×n+




n−− nm n++

n−− 0

nm 0

n++ 0

P
n−−×n−

P̂
n+×n−

+ Ã0

nd×nd





n−− nm n++

n−− 0

nm 0

n++ 0

P
n−−×n−

P̂
n+×n−



+ Ã−
nd×n−

= M̃(P̃)
nd×nd

=
[ n−− nm n++

nd M̃(P̃)−− M̃(P̃)m 0
]
= 0

nd×nd

6.2. Detailed Dynare Topology - SDA for SF1

Beginning with Algorithm 1, the initial values

X0 =−B−1C, Y0 =−B−1 A, E0 =−B−1C, F0 =−B−1 A

can be written as

X0 =−B−1C =
(

Ã0

nd×nd

)−1 [ n− n++

nd Ã−
nd×n−

0
]
=

[(
Ã0)−1 Ã−

nd×n−
0

nd×n++

]
=

[
X0

nd×n−
0

nd×n++

]
=

[
E0

nd×n−
0

nd×n++

]
= E0

and

Y0 =−B−1 A =
(

Ã0

nd×nd

)−1 [ n−− n+

nd 0 Ã+
nd×n+

]
=

[
0

nd×n−−

(
Ã0)−1 Ã+

nd×n+

]
=

[
0

nd×n−−
Y0

nd×n+

]
=

[
0

nd×n−−
F0

nd×n+

]
= F0

Now proceeding by induction and assuming that Xk, Yk, Ek, and Fk have the same dimensions (i.e., zero

and non zero), we will show this holds for Xk+1, Yk+1, Ek+1, and Fk+1. Beginning with Ek+1,

Ek+1 = Ek (I −Yk Xk)−1 Ek = Ek (I −Yk Xk)−1
[

Ek
nd×n−

0
nd×n++

]
=

[
Ek (I −Yk Xk)−1 Ek

nd×n−
0

nd×n++

]
=

[
Ek+1
nd×n−

0
nd×n++

]
which has the same zero and non zero structure as Ek. By direct extension this holds equivalently for Xk

Xk+1 = Xk +Fk (I − XkYk)−1 XkEk =
[

Xk
nd×n−

0
nd×n++

]
+Fk (I − XkYk)−1 Xk

[
Ek

nd×n−
0

nd×n++

]
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=
[

Xk
nd×n−

0
nd×n++

]
+

[
Fk (I − XkYk)−1 XkEk

nd×n−
0

nd×n++

]
=

[
Xk +Fk (I − XkYk)−1 XkEk

nd×n−
0

nd×n++

]
=

[
Xk+1
nd×n−

0
nd×n++

]
Now for Fk+1

Fk+1 = Fk (I − XkYk)−1 Fk = Fk (I − XkYk)−1
[

0
nd×n−−

Fk
nd×n+

]
=

[
0

nd×n−−
Fk (I − XkYk)−1 Fk

nd×n+

]
=

[
0

nd×n−−
Fk+1
nd×n+

]
By direct extension this holds equivalently for Yk

Yk+1 =Yk +Ek (I −Yk Xk)−1 YkFk =
[

0
nd×n−−

Yk
nd×n+

]
+Ek (I −Yk Xk)−1 Yk

[
0

nd×n−−
Fk

nd×n+

]
=

[
0

nd×n−−
Yk

nd×n+

]
+

[
0

nd×n−−
Ek (I −Yk Xk)−1 YkFk

nd×n+

]
=

[
0

nd×n−−
Yk +Ek (I −Yk Xk)−1 YkFk

nd×n+

]
=

[
0

nd×n−−
Yk+1
nd×n+

]
This gives recursions in the generically non zero matrices Xk, Yk, Ek, and Fk.

Noting that Xk and Yk can be written out blockwise as

Xk =



n−− nm n++

n−− Xk;−−,−− Xk;−−,m 0

nm Xk; m,−− Xk; m,m 0

n++ Xk;++,−− Xk;++,m 0

=



n−− nm n++

n−− 0

nm 0

n++ 0

Xk
nd×n−

=



n−− nm n++

n−− 0

nm 0

n++ 0

Xk
n−−×n−

Xk
n+×n−


and

Yk =



n−− nm n++

n−− 0 Yk;−−,m Yk;−−,++

nm 0 Yk; m,m Yk; m,++

n++ 0 Yk;++,m Yk;++,++

=



n−− nm n++

n−− 0

nm 0

n++ 0

Yk
nd×n+

=



n−− nm n++

n−− 0

nm 0

n++ 0

Yk
n−×n+

Yk
n++×n+


and hence their products can be calculated as

XkYk =



n−− nm n++

n−− 0

nm 0

n++ 0

Xk Yk
nd×n+

 and Yk Xk =



n−− nm n++

n−− 0

nm 0

n++ 0

Yk Xk
nd×n−


Similar calculations apply to YkFk and XkEk.

For Algorithm 5, note that if X̂0, Ŷ0, Ê0, F̂0 have (zero and non zero) dimensions that correspond to those

of X0, Y0, E0, and F0, the same approach can be taken. Comparing, the only requirement is that P0 takes

the form

P0 =



n−− nm n++

n−− 0

nm 0

n++ 0

P0
n−−×n−


which conforms to the structure of the matrix quadratic as shown in the subsection above.
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6.3. Detailed Dynare Topology - SDA for SF2

Beginning with Algorithm 2, the initial values

X †
0 = 0, Y †

0 =−B, E†
0 =−C, F†

0 =−A

can be written as

X †
0 = 0, Y †

0 =− Ã0

nd×nd
, E†

0 =
[ n− n++

nd −Ã−
nd×n−

0
]
, F†

0 =
[ n−− n+

nd 0 −Ã+
nd×n+

]
For the calculations, we will work with:

E†
k+1 = E†

k

(
X †

k −Y †
k

)−1
E†

k

F†
k+1 = F†

k

(
X †

k −Y †
k

)−1
F†

k

X †
k+1 = X †

k −F†
k

(
X †

k −Y †
k

)−1
E†

k

X †
k+1 −Y †

k+1 = X †
k −Y †

k −F†
k

(
X †

k −Y †
k

)−1
E†

k −E†
k

(
X †

k −Y †
k

)−1
F†

k

As above, E†
k+1 and F†

k+1 will maintain the (zero and non zero) dimensions that correspond to E†
0 and F†

0

via the post multiplication of E†
k and F†

k and induction. The same post multiplication gives X †
k+1 the (zero

and non zero) dimensions that correspond to E†
0

X †
k+1 = X †

k −F†
k

(
X †

k −Y †
k

)−1
E†

k =
[

Xk
†

nd×n−
0

nd×n++

]
−F†

k

(
X †

k −Y †
k

)−1
[

Ek
†

nd×n−
0

nd×n++

]

=
[

Xk
†

nd×n−
0

nd×n++

]
−

[
F†

k

(
X †

k −Y †
k

)−1
Ek

†

nd×n−
0

nd×n++

]

=
[

Xk
† −F†

k

(
X †

k −Y †
k

)−1
Ek

†

nd×n−
0

nd×n++

]
=

[
Xk+1

†

nd×n−
0

nd×n++

]
For Algorithm 6 with an initial guess P0, E†

0 and F†
0 are unchanged, so the only requirement is that P0

takes the form

P0 =



n−− nm n++

n−− 0

nm 0

n++ 0

P0
n−−×n−


to have (zero and non zero) dimensions that correspond to E†

0 - this conforms to the structure of the matrix

quadratic as shown in the subsection above.

PROOF OF THEOREM 2

For the proofs of (1) and (2) see Theorems 3.18 and 3.19 by Huang, Li, and Lin (2018, pp. 35,37). To proof

(3) first note that Assumption 1 implies either ρ(P)≤ 1∧ρ(Pd)< 1 and / or ρ(P)< 1∧ρ(Pd)≤ 1.

In the following we will first deal with the scenario where ρ(P)≤ 1∧ρ(Pd)< 1 and show that in this case

Hk converges quadratically to zero. To see this, note that using (64) of the primal UQME (5) and the dual

UQME (20), respectively, we receive

Lk =Mk −HkM 2
k , (A1)

Hk =Nk −LkN 2
k . (A2)
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where Nk =N 2k = P2k

d . Using (A1) to substitute Lk in (A2) yields

Hk =Nk −MkN 2
k +HkM 2

k N 2
k . (A3)

Thus, for any sub-multiplicative matrix norm ∥ .∥ we receive

∥Hk∥ ≤ ∥Nk∥+∥Mk∥∥Nk∥2 +∥Hk∥∥Mk∥2∥Nk∥2. (A4)

Since ρ(P) ·ρ(Pd)= ρ(M ) ·ρ(N )< 1 defining ϵk = ∥Nk∥∥Mk∥ we know that lim
k→∞

ϵk = 0. Hence, there is some

sufficiently large k so that ϵk < 1 and consequently

∥Hk∥ ≤
1+ϵk

1−ϵ2
k
∥Nk∥ ⇒ lim

k→∞
∥Hk∥ = 0. (A5)

From the Gelfand’s formula / the spectral radius theorem we also know

lim
k→∞

∥Nk∥1/2k = ρ(N )

so that

∥Hk∥1/2k ≤
(

1+ϵk

1−ϵ2
k

)1/2k

∥Nk∥1/2k ⇒ lim
k→∞

∥Hk∥1/2k = ρ(N )≤ ρ(Pd). (A6)

Since ρ(Pd)< 1 we know that Hk converges quadratically to zero. Hence, we also know that there must be

some sufficiently large k such that ∥Ĥk−1∥ = ∥H0 · . . . ·Hk−1∥ < 1 and consequently ∥Ĥk∥ ≤ ∥Ĥk−1∥∥Hk∥ ≤
∥Hk∥. This means that Ĥk also converges quadratically to zero, i.e.,

lim
k→∞

∥Ĥk∥1/2k ≤ ρ(N )= ρ(Pd). (A7)

Now we may rewrite (65) to

P − L̂k = ĤkMk+1, (A8)

and receive

∥P − L̂k∥ ≤ ∥Ĥk∥∥Mk+1∥. (A9)

The statement then follows from the Gelfand’s formula / the spectral radius theorem as

∥P − L̂k∥1/2k ≤ ∥Ĥk∥1/2k∥Mk+1∥1/2k ⇒ lim
k→∞

∥P − L̂k∥1/2k ≤ ρ(P)ρ(Pd). (A10)

Now let us consider the scenario where ρ(P)< 1∧ρ(Pd)≤ 1. In this case, we may define α := ρ(P) and

rewrite (5) and (20) to

AαP2
α+BPα+Cα = 0 (A11)

CαP2
α,d +BPα,d + Aα = 0, (A12)

where

Aα =αA, Cα =α−1C, Pα =α−1P, Pα,d =αPd . (A13)
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By definition the solvents Pα and Pα,d to (A11) and (A12), respectively, satisfy ρ(Pα)≤ 1∧ρ(Pα,d)< 1. Hence,

if Lk,α, Hk,α, L̂k,α, and Ĥk,α denote the quantities of the Logarithmic Reduction with respect to (A11), we

get

lim
k→∞

∥Pα− L̂k,α∥1/2k ≤ ρ(Pα)ρ(Pα,d)= ρ(P)ρ(Pd), (A14)

from the first part of the proof. From (60), (61), and (62) we receive (via induction) that

Hk,α =α2k
Hk, Lk,α =α−2k

Lk, Ĥk,α =α
∑k

j=0 2 j
Ĥk. (A15)

Moreover, since Mk,α = P2k
α =α−2k

P2k =α−2k
Mk we may use (65) to show that

∥Pα− L̂k,α∥ = ∥Ĥk,αMk+1,α∥ =α−2k+1+∑k
j=0 2 j︸ ︷︷ ︸

>1

∥ĤkMk+1∥ > ∥P − L̂k∥. (A16)

The statement then follows from (A14) as

∥P − L̂k∥1/2k < ∥Pα− L̂k,α∥1/2k ⇒ lim
k→∞

∥P − L̂k∥1/2k ≤ ρ(P)ρ(Pd). (A17)

INITIAL GUESS P0 FOR AP2 +BP +C = 0

Suppose we want to minimize the squared Frobenius norm ∥R(P0)∥2
F of the residuals

R(P0)= AP2
0 +BP0 +C,

where we restrict P0 to

P0 = diag(p1, . . . , pn), with p1, . . . , pn ∈ [−ρ,ρ], ρ ∈ [0,1).

Consequently, we have

∥R(P0)∥2
F =

n∑
i=1

n∑
j=1

(
ai j p2

j +bi j p j + ci j

)2

=
n∑

j=1

n∑
i=1

a2
i j p4

j +2ai jbi j p3
j +

(
b2

i j +2ai j ci j

)
p2

j +2bi j ci j p j + c2
i j.

Further, denoting the j-th column of R, A, B, and C as r j, a j, b j, and c j, respectively, we may write

r j(p j)= ã p4
j + b̃ p3

j + c̃ p2
j + d̃ p j + ẽ (A18)

with

ã = aT
j a j

b̃ = 2 aT
j b j,

c̃ = bT
j b j +2 aT

j c j,

d̃ = 2 bT
j c j,

ẽ = cT
j c j.

Differentiating r j with respect to p j yields

r′j(p j)= 4 ã p3
j +3 b̃ p2

j +2 c̃ p j + d̃
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Hence, an interior solution for p j must satisfy r′j(p j) = 0, so that we can obtain the p j ∈ [−ρ,ρ] that

minimizes r j(p j) as

p∗
j = argmin

p j∈g j∩{−ρ,ρ}
r j(p j)

where g j is the set of all real roots of r′j(p j) in [−ρ,ρ], i.e.,

g j =
{

p j ∈ [−ρ,ρ]⊂R : r′j(p j)= 0
}

, |g j| ≤ 3.

Algorithm 7 summarizes the proceeding to obtain the diagonal elements of P0.

Algorithm 7: Initial Guess – j-th diagonal element of P0

Given: a j, b j, c j, and ρ

Set ã = aT
j a j

Set b̃ = 2 aT
j b j

Set c̃ = bT
j b j +2 aT

j c j

Set d̃ = 2 bT
j c j

Set ẽ = cT
j c j

Define r(p j) := ã p4
j + b̃ p3

j + c̃ p2
j + d̃ p j + ẽ

Define r′(p j) := 4 ã p3
j +3 b̃ p2

j +2 c̃ p j + d̃

Obtain all p j ∈ g = {
x ∈ [−ρ,ρ]⊂R : r′(x)= 0

}
Return: argmin

p j∈g j∩{−ρ,ρ}
r(p j)
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