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From DSGE and BVAR to Artificial Neural Networks
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Abstract

This paper contributes a multivariate forecasting comparison between structural mod-
els and Machine-Learning-based tools. Specifically, a fully connected feed forward non-
linear autoregressive neural network (ANN) is contrasted to a well established dynamic
stochastic general equilibrium (DSGE) model, a Bayesian vector autoregression (BVAR)
using optimized priors as well as Greenbook and SPF forecasts. Model estimation and
forecasting is based on an expanding window scheme using quarterly U.S. real-time
data (1964Q2:2020Q3) for 8 macroeconomic time series (GDP, inflation, federal funds
rate, spread, consumption, investment, wage, hours worked), allowing for up to 8 quar-
ter ahead forecasts. The results show that the BVAR improves forecasts compared to
the DSGE model, however there is evidence for an overall improvement of predictions
when relying on ANN, or including them in a weighted average. Especially, ANN-
based inflation forecasts improve other predictions by up to 50%. These results indicate
that nonlinear data-driven ANNs are a useful method when it comes to macroeconomic
forecasting.

Keywords: Artificial Intelligence; Machine Learning; Neural Networks; Forecast
Comparison/ Competition; Macroeconomic Forecasting; Crises Forecasting; Inflation
Forecasting; Interest Rate Forecasting; Production, Saving, Consumption and
Investment Forecasting; (JEL: C45, C53, E47, E27 )

1. Introduction

Predicting macroeconomic variables during business cycles is one of the key chal-
lenges, economists face. Especially against the background of the Great Moderation’s
decay with the financial crisis 2007, and the return of increased volatility, this issue
gained even more attention. In the last decades, forecasting in economics was mainly
conducted with either structural models - such as Dynamic Stochastic General Equi-
librium (DSGE) models -, which rely on the implementation of theoretical knowledge,
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or with purely data-driven methods, such as Vector Autoregression (VAR). While con-
ventional methods constantly improved over the last fifty years, their forecasting abili-
ties are still criticized (Edge and Gürkaynak, 2010). Contrary, artificial neural networks
(ANNs) are flexible and powerful systems, that demonstrated particularly impressive
progress in recent years, but are by now rarely used in the field of macroeconomics.
With this paper, new evidence on multivariate macroeconomic forecasting is provided,
challenging standard representative DSGE and Bayesian VAR models by ANNs. The
results indicate an overall gain in forecast precision using neural networks, which un-
derpins their value for macroeconomic forecasting.

In principle, a macroeconomist can choose from a large pool of econometric mod-
els for her forecast. They differ with respect to the number of treated variables (uni-
versus multivariate), the assumption about the structure of the underlying interrela-
tion (linear versus nonlinear), as well as the setup which either relies on economic the-
ory or simply exploits correlations in the data. However, there are several undesirable
properties that conventional approaches bring along, which range from high sensitivity
regarding model specifications to high data requirements and time-consuming estima-
tion procedures. In this regard, neural networks are beneficial, as they do not require
a choice regarding the underlying structure to be linear or nonlinear, as the universal
function approximation property ensures that any underlying interrelation can be ap-
proximated to an arbitrary degree (Hornik et al., 1989). Further, except for the selection
of input variables, the model does not rely on economic theory and hence no parametric
cross-requirements can hinder the forecast from being precise. The number of included
variables is virtually unlimited as is the data to be processed. Further, no a-priori be-
liefs are required and thus also periods of unknown economic behavior are likely to be
predictable. Building on these advantages, conventional approaches are challenged by
ANNs to thereby exploit their forecasting abilities, which - to the best of the authors‘
knowledge - has not been done before.

Precisely, this paper contributes a multivariate inspection of ANNs, opposed to a
post-crisis structural DSGE model by Del Negro et al. (2015) and a Bayesian vector
autoregression (BVAR) using priors as Giannone (2016). Since they challenge their
model’s forecasting performance in various setups and improve upon predictions by
other DSGE models (Binder et al., 2021), Del Negro et al. (2015) constitutes a well es-
tablished theoretical model which is suitable for this forecasting comparison. Further,
employing a BVAR with priors as in Giannone et al. (2015) can improve upon regular
(B)VARs by optimally setting hyperparameters. On the other side, a parsimonious and
fundamental ANN is generated to limit the parameters to be estimated and to keep the
complexity of the network rather small. Hence, this paper contributes a sound com-
parison of precursor DSGE and BVAR models versus a benchmark ANN model. Fur-
thermore, official forecasts by the Greenbook and SPF predictions are added. Moreover,
the forecasting performance during crisis times is investigated, where a new Machine
Learning (ML)-based clustering (k-means) approach is provided to identify the respec-
tive subsamples. Model estimation and forecasting is based on quarterly U.S. real-time
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data from 1964Q2 to 2017Q4. Incorporating 8 macroeconomic time series (GDP, infla-
tion, federal funds rate, spread, consumption, investment, wage, hours worked), a fore-
casting comparison based on expanding window estimations is conducted.

The results show that using ANNs is advantageous, since they prove to be a robust
forecasting tool for a variety of variables. In general, the ANNs’ informativeness varies
over time and increases the more recent the data. The crisis clustering reveals similari-
ties to NBER recessions and provides further evidence for the robustness of ANN-based
forecasts with respect to disruptive times. Particularly ANN-based inflation forecasts
are precise and can compete with and improve upon official forecasts. The BVAR is
also shown to be a good forecasting tool which outperforms the DSGE, in addition the
weighted average of all models constitutes a robust method. These results suggest that
ANNs can be a very useful addition to the time series forecasting toolbox. Due to its
rather simple setup, the findings can be interpreted as a lower bound of ANN-based
forecasting power.

Assigned to the field of Supervised Learning, one of the three main ML branches, the
employed ANNs can serve well in a variety of applications. Besides pattern recognition
to identify objects or signals in speech, vision and control systems, time-series predic-
tion is a core power. However, these ML-methods are not frequently used to solve
macroeconomic problems.

This paper relates to the small branch of literature, dealing with ML implementa-
tions in a macroeconomic setup. To name some of these rare applications, Zhang et al.
(1998) and Kaastra and Boyd (1996) are primal adaptors of ANNs for economic time-
series forecasting. Also Swanson and White (1997) conduct a comparison of ANN to
several (non)-adaptive and (non)-linear models and provide evidence for their forecast-
ing superiority. Nowadays, due to increased data availability and improved technical
facilities, machine-learning based methods can exploit their full potential. While there
exists a bunch of forecasting projects in the finance area (see e.g. Fadlalla and Lin (2001)
and Dutta et al. (2006)), there is still less research conducted on ML-based macroeco-
nomic forecasting (especially in comparison to conventional methods). Smalter Hall
and Cook (2017) for example compare the forecast performance of several deep neu-
ral networks to that of the professional forecasters’ survey (SPF). These deep networks
are characterized by a structure with many hidden layers and neurons (see Section 2.1)
which is equivalent to a large number of parameters to be estimated. The authors find
their ANNs to be superior with respect to short-term unemployment predictions and
one of their networks improving at all forecast horizons. Another research project by
Verstyuk (2020) uses networks with memory of various sizes to predict US Data on five
key macroeconomic variables. The authors contrast their multivariate predictions to
VARs and provide evidence for them to generate better forecasts. Showing impulse re-
sponse functions, they also enhance the interpretability of the networks and provide evi-
dence for them to be able to discover several macroeconomic regimes. Marcellino (2004)
provide another rich comparative exercise, which predicts 15 European data series us-
ing ANNs and other linear and nonlinear methods. His findings are heterogenous with
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respect to variables and models, complex models work well for some variables and
worse for others. Furthermore, multivariate inflation forecasting is done by Medeiros
et al. (2021), who employ various ANNs as well as another ML-technique called random
forests1. Contrasting their results to a BVAR, the authors provide evidence for random
forests to produce the best predictions.

These projects have in common that results outlay benefits from using novel meth-
ods for macroeconomic predictions. However, the variety of ML-methods in general
and specifically network types is large and complemented by unlimited possibilities
of network sizes and setups. In this regard, a fairly small and simple network is em-
ployed which can be seen as a parsimonious and fundamental benchmark and enhances
comparability to conventional methods. On this basis, a broad ANN-based forecasting
project is contributed which further improves upon existing research due to the mul-
tivariate macroeconomic setup, its high number of forecasted windows and the crisis
examination.

Furthermore, the paper implements a comparative aspect bringing together ANN-
based results and predictions by DSGE and BVAR. Hence, it also relates to the branch
of literature dealing with theoretical model-based and conventional empirical forecast-
ing. DSGE models constitute the state of the art theory-based models, emphasizing in-
tertemporal decision making and the role of expectations. This class of models is very
popular and employed in many institutions as - building on sound theoretical founda-
tions - it delivers an internally consistent interpretation of the current state and future
trajectories of the economy and allows for well-grounded analyses of policy scenarios
(Del Negro and Schorfheide, 2013). In their seminal work, Smets and Wouters (2007)
apply Bayesian estimation to DSGE models and prove good forecasting performance2.
In general, Bayesian inference produces posterior predictive distributions which reflect
uncertainty regarding parameters, state variables and the realization of future shocks
conditional on the information available at that time. On the other hand, VARs are
widely used for macroeconomic forecasting. As to Karlsson (2013), their popularity
stems from the relative simplicity, flexibility, ability to fit the data and from their fore-
casting accuracy. While the rich parametrization of VAR models brings with it high
data requirements or the risk of overfitting the data, Bayesian VARs offer a theoreti-
cally grounded way to impose judgmental information and a-priori beliefs in the model.
Thereby, the number of parameters shrinks towards a stylized representation of data,
reducing parameter uncertainty and thus improving forecasts.

Many economists compared the forecasting performance of DSGE models with (B)VARs
or professional forecasts (see for example Del Negro and Schorfheide (2013) who use an
adapted Smets and Wouters (2007) model). In a subsequent study, Del Negro et al.

1Random Forests are an ensemble learning method, suitable for regression and forecasting, that oper-
ates by constructing a multitude of decision trees linking training inputs to outputs.

2There are several papers providing reviews on this topic such as An and Schorfheide (2007) and
Del Negro and Schorfheide (2011).
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(2015) improve upon their previous work, adding detailed financial frictions and thus
improve the model’s performance during the financial crisis starting 2008. Multiple
other projects provide forecasting comparisons, finding differing results depending on
the underlying model, the data used for estimation and the forecasting periods3. With
this project, a comparison of these conventional models and ANNs is provided in order
to counteract macroeconomists’ skepticism against ML-methods and to broaden their
perception with respect to the great potential of such novel tools.

This paper is structured as follows: First, the models used for estimation and fore-
casting are explained. Second, the data and forecasting strategy are presented. Then,
several pseudo out-of-sample forecasts are presented and evaluated in different sub-
samples. The results are discussed by integrating them in the current stance of litera-
ture.

2. Forecasting Approaches

2.1. Artificial Neural Network
First of all, the ANN as an increasingly popular tool of artificial intelligence is in-

troduced, which is perfectly suitable for timeseries forecasting. As stated before, the
idea of ANNs dates back to the 1940’s, however in recent years, they attracted even
more attention, which can be explained by the increasing amount of data availability
and equivalently the increased processing power of computer technology. Through
continuous innovations, training efficiency could be increased and the risk of overfit-
ting reduced, such that model training turns out to be a feasible task. While this led to
widespread applications of ANNs in a variety of fields, the area of macroeconomics has
so far refrained to a great extent from integrating them into their tool set. In order to
change this with respect to macroeconomic forecasting, a challenge is provided which
directly links the prediction power of ANNs to conventional methods.

2.1.1. Basic Concept
At first, the basic concept of neural networks is introduced, which can be stylized

by directed graphical models, in which information flows from inputs to outputs via a
specific structure. This structure consists of nodes, that conduct predefined operations

3Del Negro et al. (2007) approximate a DSGE by a VAR (so-called DSGE-VAR) and find the misspec-
ification of large-scale models is not small enough to be ignored. Rubaszek and Skrzypczyński (2008)
employ a small size DSGE model and compare its forecasting performance to a trivariate VAR. The supe-
riority of the DSGE in predicting GDP growth turns out to be insignificant. Further, most SPF’s forecasts
for inflation and the federal funds rate are better than those from DSGE and VAR models. Del Negro and
Schorfheide (2013) provide a profound study, focussing on possible improvements of model-based fore-
casts when including additional information like nowcasts, interest rates and long-run inflation. They
find that predictions can compete with Blue-Chip forecasts. Kolasa et al. (2012) provide evidence that
GDP forecasts by a DSGE model is better than that of a BVAR and DSGE-VAR in the longer run.
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on the data. Instead of specifying model equations and the relevance of data inputs,
which economists are used to, when relying on neural networks one rather discusses
the model architecture. This refers to the configuration of the network structure, i.e. the
number of nodes, the number of layers, the respective interconnections, and the type of
operations performed at each node.

Figure 1: Neural Network Scheme

Three distinct sets of nodes, collected in one layer each, form the basic architecture
of a neural network. First, there is the Input Layer which merges all model inputs, then
there is the Hidden Layer which consists of the set of computational nodes, and last the
third set of nodes constitutes the Output Layer. A basic network structure is schemati-
cally displayed in Figure 1. It shows that the Input Layer contains all variables of inter-
est and the corresponding lags, which are weighted by parameters - also called weights -
collected in the vector ωi. Feeding this weighted sum of inputs, complemented by a bias
αj, to J nodes (also called neurons), transformations according to the transfer function
Gp�q are performed in the Hidden Layer. The results are further processed by applying a
vector of weights ωj and assembled to produce the final outputs by adding another bias
term α0. Deep learning models, which are the prevailing neural networks for complex
tasks, are scaled-up versions of the introduced structure, containing multiple Hidden
Layers with an arbitrary number of parameters. For network estimation, input and
target output data is provided to determine weights and biases such that a loss crite-
rion is minimized (e.g. the mean squared error). While economists might recognize
the basic network structure as being similar to a Generalized Linear Model (GLM), the
training process is conceptually different to conventional econometric approaches em-
ploying e.g. maximum likelihood estimation. Contrary, neural networks are trained
with non-parametric algorithms which rely on back-propagation and gradient descent
for example.
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Using a less schematical and more mathematical expression, a neural network is
represented by the following equation:

yt � α0 �

J̧

j�1

ωjG

�
I̧

i�1

ω1
iyt�i � αj

�
� εt. (1)

The vector yt consists of all input variables entering with i � 1, ..., I lags which are
processed on j � 1, ..., J nodes in the Hidden Layer. As before, ωj, ωi, αj and α0 are the
parameters to be estimated.

A key advantage of neural networks is its capability to identify the information
(nodes) which is relevant for the prediction throughout the training process. In turn, the
researcher may be less selective regarding the data supplied to the model. Furthermore,
ANNs have the major advantage of being universal function approximators (Hornik
et al., 1989), which indicates that with a neural network, any underlying interrelation
can be approximated to an arbitrary degree by linear combinations of the transfer func-
tions Gp�q, such that |Hpytq �

°J
j�1 ωjGp�q|   δ with J being finite and δ P R¡0. This

characteristic implies that using ANNs, no functional form has to be preselected and
the resulting interrelation is purely data-driven. Naturally, neural networks also bring
along some caveats, such as being only locally identified. Also the estimated parame-
ters lack economic interpretability and hence they are mainly used for forecasting. In
this context, the information how predictions are generated is of less interest than their
precision. While this disadvantage is generally referred to as the black-box characteris-
tic, one can circumvent it to some degree by taking partial derivatives or by calculating
partial variable importance.

Consequently, neural networks differ with respect to the specific network architec-
ture in terms of its size, meaning the number of neurons and hidden layers, the intercon-
nection between nodes, the applied transformations, the training procedure employed
to estimate weights and biases, and several additional settings which can be individ-
ually adjusted. In the following section, some details regarding the specific network
employed for the comparison will be presented.

2.1.2. Network Architecture
For this forecasting comparison a fully connected feed forward nonlinear autore-

gressive neural network is considered. Here, the specification fully connected refers to
connections which exist between all nodes, while feed forward indicates that data is only
transferred in one direction, namely from Input to Output Layer (no reverse move-
ment). Autoregressive is a standard expression indicating that lags of variables also enter
the system and are understood as those. For this exercise, a lag length of four is se-
lected, since this has been shown to be sufficient for quarterly data4. Furthermore, this
lag structure is chosen to create a fair comparison between BVAR and ANN by allow-

4Also (Medeiros et al., 2021) choose a lag length of 4 in their ML-based forecasting exercise.
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ing for the same information set. The network structure is selected because it is well
suitable for timeseries analysis. Further, with the intention to reduce complexity and
deviate as little as possible from conventional methods, the ANN is designed with one
Hidden Layer only. As the forecasting performance of networks generally increases
with their complexity and depth, the ANN at hand is expected to be a parsimonious
and fundamental benchmark.

The neural network’s weights and biases are estimated using the Levenberg-Marquardt
algorithm with Bayesian regularization (Foresee and Hagan, 1997), which produces net-
works with excellent generalization capabilities. Typically, a network is trained using
backpropagation, which relies on supervised learning, deploying a gradient descent
method to reduce a chosen error function (e.g. mean squared error). One caveat of this
technique is the potential for overfitting, which leads to a loss of generalization due to
fitting of the noise. Bayesian regularization, developed by MacKay (1992) and trans-
ferred to neural networks by Foresee and Hagan (1997), is a technique to counteract this
issue. While in general, the mean squared errors ED are reduced, this method aims at
also shrinking the employed weights by expanding the objective to F � βED � αEW ,
where EW is the sum of squares of the network weights and biases. The parameters α
and β determine the relative importance of function approximation and generalization
and are optimized through Bayesian methods. The required Gauss-Newton approxi-
mation of the Hessian matrix is achieved applying the Levenberg-Marquardt optimiza-
tion algorithm. This procedure reduces the potential for arriving at local minima and
thereby further increases the generalizability of the network (Ticknor, 2013). One great
advantage of Bayesian estimation compared to other regularization techniques, such
as early stopping, is the missing needs of splitting the available data into training and
validation sets. The resulting network therefore benefits from more training data.

Next, the employed transfer function Gp�q is designed in a rectified linear form ReLUpxq �
maxp0, xq, which gained popularity in recent years (Glorot et al., 2011). Compared to
sigmoid or similar activation functions, it allows faster and effective training of neural
networks using complex datasets. For choosing the width J, which is equivalent to the
number of nodes per layer, Hanin and Sellke (2018) provide a range for the minimum
width such that in the setting with a single hidden layer and ReLU activation func-
tions, the universal approximator property is fulfilled5. In this application, the mini-
mum width is between 33 and 40 nodes. However, it still depends on the complexity
of the underlying data. An important feature of Bayesian regularization is that it pro-
vides a measure of how many network parameters/nodes are effectively being used.

5According to Hanin and Sellke (2018),“feed-forward neural nets with a single hidden layer can
approximate essentially any function if the hidden layer is allowed to be arbitrarily wide." This re-
sult holds for a variety of activation functions, including ReLU. In detail, any continuous function
f : r0, 1sdin Ñ Rdout can be approximated arbitrarily close by a ReLU net N with input dimension din,
output dimension dout and minimum layer width ν: | f pxq � fNpxq| ¤ ε, with ε ¡ 0. Calculating ν ac-
cording to din � 1 ¤ νminpdin, doutq ¤ din � dout, gives the minimum width for the universal function
approximation property to hold.
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This number of effective parameters is determined in a pre-training step with j � 1, ..., 40
nodes, prior to the actual estimation. As the network converges using j � 20 nodes (the
number of effective parameters remains constant when increasing J), this is chosen as
the optimal width for the network at hand.

During each training session, the network’s initial weights and biases are randomly
chosen, which may lead to different solutions for the same application. Hence, in order
to reduce the variance of the individual ANNs, one can estimate multiple networks (in
this case n � 1, .., 30) and average their outputs. This is especially useful for noisy data
and small datasets and a common procedure when working with neural networks, see
Cook and Smalter Hall (2017). All multi-step ahead forecasts are computed relying on
the iterative method6.

2.2. Conventional Models
2.2.1. Bayesian Vector Autoregression

One of the key empirical tools in modern macroeconomics is (Bayesian) Vector Au-
toregression. Their basic concept builds on linearly modeling multiple timeseries, cap-
turing their joint dynamics. VARs are especially suitable for forecasting and policy anal-
ysis to shed light on the source of business cycle fluctuations. Building on their frequent
and widespread usage, a Bayesian VAR (BVAR) is added to this forecasting competition,
which allows to evaluate the ANN against such a well-known benchmark.

VARs are in principal multivariate generalizations of univariate autoregressive mod-
els. However, there are many authors who show the superiority of VARs with a prior
structure, specifying the shape of the multivariate distribution of the parameters, over
unconditional univariate and multivariate models (Canova, 2011). Through the choice
of priors, possible overfitting and imprecise predictions caused by a large number of
parameters to be estimated can be avoided. A reduced form representation of the VAR
is given by:

yt � Φc �
I̧

i�1

Φiyt�i � εt (2)

εt � Np0, Σq, (3)

where yt is the vector of endogenous variables, entering with i � 1, ..., I lags, εt is a
vector of one-step ahead forecast errors7, Φc is a vector of constants, and Φi and Σ are
matrices containing the parameters to be estimated. These parameters can be stacked
into one vector as β � vecprΦc, Φis

1q. Estimating this vector requires the user to impose
additional prior beliefs on the parameters. In this case, the conditional prior distribution

6For multistep ahead predictions, this naive recursive method is chosen - instead of a Monte-Carlo
sampling - in order to keep the computational burden low.

7In order to characterize the conditional distribution of yt given its history, a distributional assumption
has to be made for εt, such as the normal distribution here.
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of the coefficients is given by a conjugate prior of the following form

β|Σ � Npb, ΣbΩξq, (4)

where b and Ω are known functions of hyperparameters, and ξ controls the degree of
shrinkage and hence the tightness of the prior information8. In case that ξ Ñ inf, pos-
terior expectations coincide with ordinary least squares (OLS) since the prior becomes
uninformative. Contrary, when ξ Ñ 0, the posterior approaches a dogmatic prior. Con-
sequently, ξ is the key parameter for this Bayesian estimation.

The paper follows Giannone et al. (2015)9 in determining the optimal informative-
ness of the priors, which is treated as an additional parameter in their approach. While
the prior is centered around the Minnesota prior, the degree of shrinkage is chosen opti-
mally, given the marginal likelihood of the data. Furthermore, the GLP prior improves
long-run forecasting properties by optimally setting hyperparameters for the combina-
tion of the Minnesota prior, the sum of coefficients prior and the dummy-initial obser-
vations prior. The authors provide evidence for this procedure to be superior to naive
benchmarks and flat-prior BVARs.

One hyperparameter which remains to be determined is the lag length I. As Karls-
son (2013) summarizes, increasing the lag length only improves some variables’ fore-
cast, choosing it by maximizing the marginal likelihood leads to modest improvements
for a majority of the variables. As Carriero et al. (2013) show, the gains of this procedure
are rather small and in general, a lag length of four (for quarterly data) is an efficient
choice. Hence, the maximum lag number is selected to be I � 4.

Based on the estimated model, iterative forecasts are conducted10

ŷj
T�h �

h�1̧

i�1

Φj
i ŷT�h�i �

I̧

i�h

Φj
iyT�h�i �Φj

c, (5)

where the first sum indicates that previous forecasts are used for predictions further in
the future and the second sum represents lags of the actual data (this term cancels as
soon as h ¡ 4). Hence, a sample of forecasts pŷj

T�1, ..., ŷj
T�Hq is generated from the joint

posterior distribution of parameters and ξ, where j � 10.000. Calculating the mean (and
median) of the predictive densities for each vintage and each forecasting horizon gen-
erates the forecasts. The BVAR optimizes the hyperparameters again for every window
which categorizes it as an adaptive forecasting model.

8The conjugate prior implies a likelihood and posterior that come from the same family of distributions
and hence makes Bayesian inference feasible also for a large number of parameters to be estimated.

9The replication codes are made publicly available by the authors (Giannone et al., 2014).
10Alternatively, one could do direct forecasts, with individual parameter sets for every h. For the sake

of comparability with the DSGE model, the focus lies on iterative forecasts.
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2.2.2. Dynamic Stochastic General Equilibrium Model
As stated before, DSGE models - based on modern macroeconomic theory - are an-

other tool often used to explain and forecast the paths of aggregate time series over
the business cycle. Within this class of models, decision rules of the involved agents
are derived from assumptions about preferences, technologies, and fiscal and monetary
policy regimes, by solving intertemporal optimization problems (see Christiano et al.
(2010) for a review). Since also DSGE models are frequently used for forecasting, or
at least implicitly rely on precise forecasts when used for modeling e.g. policy impli-
cations, one representative model is added to this comparison. The employed DSGE
model (Del Negro et al., 2015), which was developed post-(financial)-crisis, is chosen
because the authors provide several profound forecast evaluations themselves. Fur-
thermore, Binder et al. (2021) include it in an extensive forecasting comparison, where
the model succeeds against multiple other DSGE models.

The DSGE model by Del Negro et al. (2015) builds on work by Smets and Wouters
(2007) and extends their work by detailed financial frictions which considerably im-
proved the model’s fit against the background of the financial crisis, as well as a time
varying inflation target. It is of medium-scale and adds nominal price and wage rigidi-
ties, consumption habit formation and investment adjustment costs to the standard neo-
classical growth model. In terms of aggregate demand, households maximize their life-
time utility choosing consumption and labor in a non-separable utility function. They
are subject to an intertemporal budget constraint and preferences are characterized by
habit persistence. Household have the monopoly on labor and stickiness of wages is
introduced through a Calvo framework. The supply side is formed by monopolisti-
cally competitive firms on the one hand, which produce intermediate goods and sell
these to another firm which aggregates them to a final consumption good. For the pro-
duction, the firm chooses labor and capital inputs. The final good is sold at prices set
according to Calvo as consumption or investment good. The financial sector consists of
a financial intermediary, capital producers and entrepreneurs, and comprises frictions
as designed by Bernanke et al. (1999). Households store their deposits at banks, which
lend to entrepreneurs who use the funds together with their own wealth to acquire
physical capital. The capital in turn is rented to intermediate goods producers. The en-
trepreneurs’ ability to manage funds effectively is subject to disturbances which gives
rise to a state-verification problem. This in turn leads to a spread above the risk-free
rate.11.

In general, before forecasts can be obtained from DSGE models, solving them with
numerical methods is the first step to then estimate the models with Bayesian tech-
niques (see e.g. Del Negro and Schorfheide (2011)). More precisely, the set of equations
characterizing the models’ equilibrium are brought into a system of linear rational ex-

11The model codes are extracted from the archive of macroeconomic models (Wieland et al., 2012) and
(Wieland et al., 2016) and adapted as required.
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pectations difference equations, which can be expressed in their state-space from:

st � Φm
1 pθqst�1 �Φm

ϵ pθqϵt (6)
yt � Ψ1pθqst �Ψ0pθq. (7)

Here, st represents model inherent state variables, and the coefficient matrices Φm
1 and

Φm
ϵ are now functions of model parameters θ. The observational variables yt are then

linked to model variables through the measurement equation (7), which also contains
model-dependent coefficient matrices Ψ1pθq and Ψ0pθq. While the state variables of the
DSGE model are already in a VAR-form, one can also rewrite the state-space represen-
tation (6) and (7) as an autoregressive process of the observable vector yt. Sticking to
the notation in Equation (2), we obtain

yt � Ψ0 �
I̧

i�1

ΦipΦm
1 , Φm

ϵ , Ψ1, Ψ0qyt�i �ΦϵpΦm
ϵ , Ψ1qεt. (8)

Hence, one can see that the estimation of the DSGE model is at its core similar to the
BVAR introduced in the previous section, however there are cross-coefficient restrictions
which the VAR-parameters have to fulfill (see the dependency of Φi and Φϵ on coeffi-
cient matrices of the state-space model and thereby on model parameters θ and their
interrelations). The specific measurement equations are formulated following Del Ne-
gro et al. (2015).

In the next step, the analysis relies on Bayesian techniques to estimate the model
parameters θ, which is known as a well-designed and robust method (see An and
Schorfheide (2007)). As a prerequisite, the prior distribution of each parameter has to be
specified, for which the paper leans on the authors’ suggestions. The process of poste-
rior sampling follows a Metropolis-Hastings algorithm and ultimately allows to make
predictions following

ŷj
T�h � Ψ1pθ

jqsj
T�h �Ψ0pθ

jq, (9)

which yields a sample of forecasts pŷj
T�1, ..., ŷj

T�Hq, generated from the posterior predic-
tive distribution of the DSGE model with j � 10.000 draws. For multiple step-ahead
forecasts, first the state variable paths are generated and thereby iterative predictions of
the observables. This estimation and forecasting procedure is conducted for each win-
dow and the mean (and median) are calculated. All these settings are kept constant for
each window over the expanding estimation scheme, it is hence a non-adaptive proce-
dure. Please refer to the Appendix for a more detailed description of the algorithm and
further settings.
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2.3. Model Average
Since this is a common method when conducting forecasts with various models, also

a model average (ModAv) is created, which is a simple equally weighted joint forecast:

yModAv
T�h �

1
3

�
yANN

T�h � yBVAR
T�h � yDSGE

T�h

	
. (10)

Here, yANN
T�h , yBVAR

T�h and yDSGE
T�h are h-step ahead predictions for each variable from the

respective models as stated above. This constitutes the fourth forecasting method.

2.4. Official Forecasts
Another popular type of non-structural forecasts are official forecasts conducted for

example by the Federal Reserve Board of Governors, called Greenbook (GB) forecasts.
These projections of multiple key economic indicators are produced prior to each meet-
ing of the Federal Open Market Committee, and made publicly available after 5 years.
Furthermore, a consensus forecast is regularly generated based on the Survey of Pro-
fessional Forecasters (SPF). Here, several economists, companies and agencies produce
individual forecasts of given macroeconomic indicators which forms an amount of val-
ues which often has the tendency to cluster near the realized value. This characteristic
makes SPF forecast but also well-founded GB-forecasts valuable and frequently used
benchmarks. Hence, in addition to the model-based predictions, both are included in
the comparison.

3. Estimation Principle & Data

3.1. Estimation Principle
Employing the introduced models, an expanding window estimation is conducted.

The whole quarterly dataset ranges from 1964Q1 to 2020Q3, and the initial estimation
window is defined from 1964Q2 to 1987Q2. Each following window expands by one
quarter by adding the subsequent data point to the sample12. Forecasts by the models
are compared against each other, as well as against official forecasts. Hence, as conve-
nient for forecast comparisons, vintage data is used to ensure that model estimates and
competing forecasts only use information that was available at the time of the predic-
tion. Consequently, real-time data is used for model estimation.

3.2. The real-time Data Set
For the estimation of each forecasting model, the paper follows Del Negro et al.

(2015) by choosing 8 representative U.S. data series: Real gross domestic product (ROUT-

12The first estimation window contains data on 94 quarters, which is well above the recommendation
by Fernandez-Villaverde and Rubio-Ramirez (2004), who determine the minimum number of observa-
tions for Bayesian estimation to be around 48 quarterly observations.
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PUT), the GDP deflator (GDPDEF), nominal personal consumption expenditures (CONS)13

and fixed private investment (FPI) are generated by the Bureau of Economic Analysis
(BEA) and collected in the National Income and Product Accounts of the United States
(NIPA). All of the aforementioned variables are real-time data series, providing a realis-
tic environment to evaluate forecasts based exclusively on the information available at
that point in time. The average weekly hours of production (AWHNONAG) is included
in revised form as the difference between vintages is assessed to be neglectable. The
hourly wage of the non-farm business sector (COMPNFB) is also revised, as real-time
information would limit the length of the dataset substantially. Further, the effective
federal funds rate (EFF) and the Spread (BAA10YM)14 are included15. The civilian em-
ployment (CE16OV) and the population level (CNP16OV, in thousands of persons)16 are
required for variable transformation and used in revised from. After employing some
transformations on the data (see Appendix), the variables represent the growth rates of
output, consumption, investment, the real wage, furthermore the hours worked, infla-
tion, the federal funds rate (FFR) and a spread.

Some considerations go into the selection of data for official forecasts. Greenbook
data is extracted by collecting that of the last FOMC meeting of the respective quarter.
Since the real time dataset for the estimation is constructed using data as it existed in the
middle of each quarter (Croushore and Stark, 2001), this procedure ensures compara-
bility between forecasts, being conservative in a sense that if at all, the official forecasts
are too good as they might have somewhat larger information sets. The Greenbook pre-
dictions range from 4 to 8 (and more) quarters ahead and, amongst others, provide data
on real GDP growth, the GDP deflator and the Federal Funds Rate. Since there is a lag
of 5 years of the publication, data is available up to 2015 only. The SPF predictions are
available 1 to 4 steps ahead, GDP deflator and real GDP growth are included and the
dataset covers the whole analyzed period from 1964 up to 2020. Since the professional
forecasters provide a range of predictions, their mean is used as the SPF measure.

4. Forecast Evaluation Strategy

The precision of forecasts crucially depends on the kind of evaluation measure as
well as the dimension along which it is compared. In the following, the employed per-
formance measures as well as two evaluation dimensions which refer to (a) different

13ROUTPUT, GDPDEF and CONS are extracted from the Real-Time Data Set for Macroeconomists
(RTDSM) provided by the Federal Reserve Bank of Philadelphia (see Croushore and Stark (2001) for
detailed information).

14The spread is defined as Moody’s seasoned Baa corporate bond yield relative to the yield on a 10-year
treasury bond with constant maturity.

15AWHNONAG, COMPNFB, EFF and BAA10YM are extracted from the database FRED offered by the
Federal Reserve Bank of St. Louis

16FPI, CE16OV and CNP16OV are taken from the Archive for Federal Reserve Economic Data (AL-
FRED) by the Federal Reserve Bank of St. Louis.
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time segments under investigation, and (b) the identification of the forecasted period as
crisis time are described.

4.1. Performance Measures
RMSFE. For every estimation, iterative pseudo out-of-sample forecasts with horizons
h � 1, .., 8 are calculated17. To evaluate them, revised data from the most current vintage
(2020Q3) is used to determine root mean squared forecasting errors (RMSFE). Given a
vector of variables to be forecasted y by method m, the real-time forecast is evaluated
with

RMSFEpyh
mq �

gffe 1
T

Ţ

t�1

pyt � ŷh
m,tq

2 (11)

where ŷh
m,t denotes predictions for each variable in y, for each step h, and T is the total

number of vintages. Following Edge and Gürkaynak (2010), this metric is common for
DSGE-based forecasting performance calculations and can easily be applied to BVAR
and ANN-based methods. The results are given in two versions: First, the RMSFE is
calculated for each variable and each forecasting horizon h � 1, .., 8 and then averaged
over all 8 variables (RMSFEall). Next, the average is taken over a reduced set of vari-
ables (GDP, inflation and federal funds rate; RMSFEred), which are of special interest to
macroeconomists.

Test for Superior Predictive Accuracy. To evaluate the statistical significance of the fore-
casting results, the test for superior predictive accuracy by Hansen (2005) is conducted.
It tests whether the forecasts from distinct models are superior to a set of benchmark
models and improves upon the reality check by White (2000) because it is more pow-
erful and less sensitive to poor and irrelevant alternatives. Each model produces a se-
quence of losses Lm,t which are the deviations from actual data in this case. Let the
benchmark model be m � 1 and the alternative models be m � 2, ..., M, (t � 1, .., T),
then the relative performance can be defined as

Xm,t � L1,t � Lm,t. (12)

The null hypothesis to be tested is that the benchmark model is not inferior to other
models, which can be formulated as H0 : λm � EpXm,tq ¤ 0 for all m � 1, .., M because
λk ¡ 0 means that model m is better than the benchmark. The test statistic TSPA

n �
maxm�2,..,MX̄m{ω̄mm where X̄m is the m’th element of X̄ � n�1°n

t�1 Xt and ω̂2
mm is a

consistent estimator of ω2
mm � limnÑ8varp

a
nXm,nq. Thus, the question is whether the

17The number of forecasting horizons differs in the literature and varies between one year to up to
three years. With the choice of a 2 year horizon the paper follows Edge and Gürkaynak (2010) who also
compare conventional models’ prediction performance; and multiple machine-learning projects such as
Verstyuk (2020) and Paranhos (2021). The analysis thus contains all information for predictions up to 8
quarters ahead.
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t-statistic TSPA
n is too large for plausibility of λ ¤ 0. Assuming strict stationarity of

Xt, the test can be implemented using the stationary bootstrap of Politis and Romano
(1994).

Hence, the Hansen (2005) test compares a benchmark model to a set of alternatives
and answers the null hypothesis whether the benchmark is not inferior to any alterna-
tive forecast. This approach is applied to the forecasting comparison by using either a
setup with the ANN-based predictions or the ModAv as the benchmark. Within each
setup, the set of models is either the reduced one (comprising ANN/ModAv, BVAR and
DSGE) or the full one also including the official forecasts. This allows to deduce the
overall best predictions, but also the best model-based forecasts. Furthermore, forecast
errors for each individual variable and also for the reduced (GDP, inflation, FFR) and
full average are taken into account18.

4.2. Subsamples
Subsamples According Time Segment. Multiple historic events and resulting fluctuations
in the data motivate the contemplation of different forecast subsamples. The first one
consists of forecasts during the most recent post-crisis time periods from 2010Q2 to
2017Q4 (Section 1). This is motivated by the interest in insights regarding contempo-
rary forecasting power. To evaluate the performance over a larger, crisis-influenced
but rather stable estimation subsample, it is further looked at forecasts from 1999Q1 to
2017Q4 (Section 2)19. During the great moderation (starting in the 1980’s until 2007),
the volatility of business cycle fluctuations declined, which increases the informative-
ness of the training sample and simplifies the forecasts. The epoch between 1964 and
1987 is embossed by high volatility in monetary policy as well as politics, expressed in
manifold crises, which impede the training/estimation process. Hence, this estimation
window is analyzed seperately with all 123 forecasts (1987Q3:2017Q4) evaluated as a
whole (Section 3). The principle of using different forecasting subsamples is visualized
at the bottom of Figure 2.

Subsamples According Crises Identification. In addition, in order to allow for a forecast
evaluation over disruptive times, a k-means clustering of the 8 data series is performed.
This method is assigned to the class of unsupervised learning. It follows Lloyd (1982)
by assigning n observations to one of k clusters. These are defined by centroids which
are randomly initialized and optimized until convergence by an iterative process (see
Appendix for details). This happens in an unsupervised manner, i.e. no targets are deter-
mined, and hence the reason for datapoints to be assigned to a specific cluster may be
manifold. Nevertheless, defining clusters k � 2, the multivariate dataset at hand seems
to identify recessions very precisely. Figure 2 shows the k-means result in a column chart
in blue (references to the left-hand axis). The clusters are indicated by 1, representing

18The codes for conducting this test are publicly available within a toolbox by Sheppard (2009)
19A comparable division is conducted by (Medeiros et al., 2021) and justified by a change in inflation

volatility around the millennium.
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Figure 2: Crises Identification & Estimation and Forecasting Scheme

Note: This figure depicts the mapping of all data series into two k-means clusters (left hand
axis) against GDP growth (right hand axis). It is obvious that periods clustered in group 2
(indicated by blue bars at value = 2), coincide with periods of small GDP growth. Further,
the grey shaded areas depict NBER-dated recessions, which also coincide with most of the k-
means-dated crises periods. The principle of expanding window estimation and the evaluation
according time-based subsamples is indicated at the bottom.

normal times, and 2, referring to recessions. Taking a look at GDP growth in the same
figure (right hand side axis), one can clearly see the interrelation between downdrafts
in GDP growth and crises identified through clustering. Further, these phases coincide
with the grey shaded areas, which represent the NBER-defined recession indicators20.
Moving along historic events, by this method one can identify the period of monetary
tightening (1969/1970), the oil crises 1973-1975, 1979 and 1981/1982 and the golf war
1990/1991. Further, the burst of the dot-com bubble in 2001, the financial crisis (2007-
2009) and the corona crisis (2020, not indicated here) can be tagged. It is obvious that
the k-means approach allocates more quarters to the recession cluster than the NBER
data. However, since these are centered around NBER-crises periods, it seems as if the
k-means approach already identifies the onset of recessions as well as some separate
recessive quarters. The paper takes advantage of this finding and further provides in-
sights about the forecasting performance of each model during these crises.

20This data series (USRECQ) is extracted from FRED.
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5. Forecasting Results

This section presents the forecasting results based on DSGE, BVAR and ANN models
and compares them to the model average (ModAv) as well as official forecasts within
several subsamples. First, results are compared along the time dimension using three
previously defined subsamples (2010Q2:2017Q4, 1999Q1:2017Q4 and 1987Q3:2017Q4).
In the Appendix, forecasts are further compared along periods identified as crises times
(H.2).

5.1. Forecasting Results by Time Segment
5.1.1. 2010Q2 to 2017Q4 (Section 1)

The analysis starts by focussing on the moste recent forecasts. Having a look at the
epoch after the financial crisis, starting in year 2010, the forecasting power of the ANN
can be seen (see Table 1). Averaging the predictions of all 8 variables (RMSFEall), the
ANN produces the most exact forecasts for h � 3 : 8. In the very near term, h � 1 : 2, the
BVAR succeeds the remaining models. Hansen’s test for superior predictive accuracy
supports this result, yielding large p-values for the ANN at respective forecast horizons
(see Appendix Table 8)21.

While the ANN outperforms the others concerning all variables for most of the fore-
casting horizons, it even wins at all horizons concerning the core variable set consisting
of GDP, Inflation and the Federal Funds Rate (RMSFEred). Even compared to the Green-
book and the SPF forecasts, the ANN‘s predictions are much closer to the data. The
second best model is the BVAR, followed by the Model Average and the DSGE model.

This result is partly driven by an extraordinarily precise ANN-based inflation fore-
cast for all forecast horizons h (Figure 3), which improves the Greenbook and other
models’ predictions by 20% to 50% and the SPF forecast by up to 5%. GDP growth is
best predicted by the DSGE model in this section, however the results are very close to
the other models and around 15% better than the Greenbook. There are no FFR fore-
casts available by the Greenbook for this section, hence the long-term superiority of the
ANN is only shown against ModAv, BVAR and DSGE-based predictions (in the short
and medium term, the BVAR seems to be slightly better). Figure 11 provides more de-
tailed insights on the remaining variables‘ forecasts by each model. While ANN-based
investment forecasts are improved and now superior from h � 3 on, consumption fore-
casts deteriorate in the long-run. The wage predictions still vary over horizons, whereas
forecasts of hours worked seem to converge with the forecasting horizon. Furthermore,
the ANN improves its financial (spread) forecasts and is now superior from h � 4 : 8.

While it is difficult to disentangle the causes for varying superiority in the predictive
accuracy, it is clear that after the financial crisis there is less volatility in the data which in
general facilitates forecasting. This is underlined by low RMSFEs over all horizons and

21The SPA test is either conducted with the ANN or the ModAv as benchmark. This is because the
two models‘ results are very close and by this method one can draw more conclusions about whether the
ANN or another model drives the superiority of the ModAv.
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Table 1: RMSFE Section 1

Model h � 1 h � 2 h � 3 h � 4 h � 5 h � 6 h � 7 h � 8

av. all Vs.

ANN 0.45 0.50 0.48 0.49 0.47 0.49 0.51 0.51
ModAv 0.44 0.46 0.48 0.49 0.48 0.50 0.53 0.52
BVAR 0.43 0.46 0.49 0.51 0.51 0.53 0.55 0.56
DSGE 0.53 0.56 0.57 0.58 0.58 0.59 0.62 0.61

av. red. Vs.

ANN 0.24 0.27 0.28 0.30 0.30 0.31 0.33 0.33
ModAv 0.25 0.28 0.31 0.33 0.34 0.36 0.38 0.39
BVAR 0.25 0.27 0.30 0.31 0.31 0.33 0.34 0.36
DSGE 0.30 0.35 0.40 0.43 0.46 0.50 0.53 0.55

GB 0.32 0.35 0.37 0.36 0.35 0.35 0.34 0.37
SPF 0.31 0.31 0.30 0.31 NaN NaN NaN NaN

Note: The column av. all Vs. shows the RMSFE, of the respective subsample, averaged over all 8
variables. The column av. red. Vs. averages over GDP, inflation and the federal funds rate only.
h � 1, ..., 8 gives the forecasting horizon. As there is no FFR data from the SPF available, it is
averaged over GDP and Inflation forecasts only. The maximum forecast horizon of the SPF is 4. The
GB forecasts are available up to 2015. Since there are no Greenbook FFR forecasts available for this
section, the av. red. Vs. now refers to the average over GDP and inflation only, similar to the SPF.

models compared to section 2 and 3. However, GDP growth and inflation paths (Fig-
ure 8 and 9) still indicate a substantial degree of volatility after 2010. The improvement
(especially in the ANN-based inflation predictions) could therefore also result from an
enlarged training sample which now includes information on the financial crisis and the
underlying mechanisms, which are incorporated in the post-crisis DSGE model through
theoretical assumptions and the choice of priors. The results from section 1 hence con-
stitute a fascinating result for the robustness of ANN-based forecasting performance
over many variables and especially for inflation.

5.1.2. 1999Q1 to 2017Q4 (Section 2)
The second forecasting segment starts after the phase of high economic volatility be-

fore 1999 and averages over forecasts based on vintages ranging from 1999Q1 to 2017Q4.
Table 2 shows the respective results measured again as RMSFEs. While we can see that
the performance of the DSGE is now much more competitive, the lowest RMSFEs av-
eraged over all variables are provided by the ModAv which is mainly driven by the
BVAR during short-term predictions (h � 1 : 4), while the ANN again provides more
predictive power during long-term forecasts (h � 5 : 8). The results from Hansen (2005)
underline the overall superiority of the ModAv (see Table 11) with the respective drivers
giving the largest p-values when omitting the averaged forecasts (see Table 10).
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Figure 3: Relative RMSFE Section 1
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Note: This figure shows RMSFEs of individual variables as percentage deviation
from the ANN over all forecast horizons.

Focussing on the reduced variable set, the ANN already drives the ModAv’s fore-
casts for h � 3 and even provides the most exact forecasts itself for h � 4, .., 8. It is of
special interest, that the ANN’s superiority also holds true comparing it to the Green-
book forecasts. Superior predictive accuracy of the ANN for the reduced variable set is
also found by the test results in Table 10. Including all models and the official forecasts
as alternatives, the test results still provide evidence that the ANN produces the most
exact forecasts starting with forecast horizon h � 3 to h � 8. It is thus the preferred
specification for medium- and long-term predictions in this section.

The individual variables’ predictions in terms of relative RMSFEs (Figure 4) show
in detail the source of the ANN’s performance. GDP growth forecasts gain in precision
compared to all other models and the officials’ in the medium-term. Further, in the long
run, the ANN is superior. Forecasted GDP growth paths of each model versus actual
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Table 2: RMSFE Section 2

Model h � 1 h � 2 h � 3 h � 4 h � 5 h � 6 h � 7 h � 8

av. all Vs.

ANN 0.62 0.75 0.75 0.78 0.77 0.77 0.82 0.83
ModAv 0.57 0.67 0.68 0.71 0.74 0.75 0.79 0.81
BVAR 0.58 0.65 0.70 0.75 0.80 0.81 0.83 0.85
DSGE 0.61 0.69 0.74 0.78 0.83 0.85 0.88 0.90

av. red. Vs.

ANN 0.32 0.43 0.43 0.46 0.47 0.49 0.52 0.51
ModAv 0.31 0.38 0.42 0.48 0.48 0.50 0.53 0.54
BVAR 0.32 0.38 0.43 0.46 0.50 0.52 0.55 0.57
DSGE 0.33 0.42 0.47 0.51 0.55 0.59 0.61 0.64
GB 0.31 0.36 0.41 0.45 0.49 0.52 0.54 0.58
SPF 0.38 0.40 0.42 0.43 NaN NaN NaN NaN

Note: The column av all vars shows the RMSFE, of the respective subsample, averaged over all
8 variables. The column av red vars averages over GDP, inflation and the federal funds rate only.
h � 1, ..., 8 gives the forecasting horizon. The GB forecasts are available up to 2015. As there is no
FFR data from the SPF available, it is averaged over GDP and Inflation forecasts only. The maximum
forecast horizon of the SPF is 4.

realized data is given in Figure 8 in the Appendix. It is obvious that neither model nor
professional forecasts mimic the actual GDP growth path precisely, especially prior to
2010. Opposite to the other models, the ANN prescribes more and stronger fluctua-
tions leading to closer paths to actual (see h � 4 and h � 8). Additionally, the inflation
forecasts of the network extends its lead relative to BVAR and DSGE, and this superi-
ority increases with the forecasting horizon. In addition, the gap towards the officials’
inflation forecast can be reduced by 10 pp. It should be mentioned though, that the
Greenbook has missing datapoints as for several projections, the long-term forecasts
are missing (especially in crisis times) and in addition the sample’s last values are from
2015. Nevertheless, showing the GB as a comparison is interesting, however due to
these reasons, the results should not be seen as a proof against the forecasting perfor-
mance of the ANN. Forecast paths for inflation are given in Figure 9 in the Appendix.
The Officials’ predictions are quite precise before 2002 and after 2010, while prescrib-
ing too low paths in the meantime, during which the other models perform well. The
subfigure referring to h � 8 underlines the lack of data of the SPF and the incomplete
dataset by the Greenbook. The improvement of the ANN with respect to the other mod-
els in this section is remarkable due to high inflation volatility22. The relative RMSFE

22Similar superiority of a ML-model, a random forest in their case, during the 2001:2015 period is
provided by Medeiros et al. (2021).
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Figure 4: Relative RMSFE Section 2
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Note: This figure shows RMSFEs of individual variables as percentage deviation
from the ANN over all forecast horizons.

of FFR forecasts in Figure 4 show a switch from inferiority in the short-term to dis-
tinct superiority in the long-term (paths are given in Figure 10 in the Appendix). It is
obvious that the actual FFR path differs substantially from the other variables consti-
tuting less volatility especially during the zero lower bound period after the financial
crisis. This, in the short-term, seems to be easily detectable by the BVAR and the offi-
cials, while the DSGE models has difficulties in determining the FFR level. In the long
run we see larger deviations in general. However, the ANN-based forecasts manage
to predict some trends very well as during the onset of the financial crisis. Taking a
closer look at the remaining variables (Figure 12) consumption and investment show
medium-term superiority of the ANN which matches well the results for GDP. RMSFEs
for wage is mixed over the forecast horizons whereas the spread and the hours worked
are precisely predicted by the ANN in the long run.
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5.1.3. 1987Q3 to 2017Q4 (Section 3)
Analyzing the results of the third section, which includes forecasts from all 123 vin-

tages, the RMSFEs indicate that the BVAR provides the most exact forecasts on average
(see Table 3), closely followed by the Model Average (ModAv) and the ANN, while the
DSGE performs worse.

Table 3: RMSFE Section 3

Model h � 1 h � 2 h � 3 h � 4 h � 5 h � 6 h � 7 h � 8

av. all Vs.

ANN 0.62 0.71 0.72 0.75 0.77 0.79 0.83 0.85
ModAv 0.60 0.65 0.68 0.70 0.72 0.74 0.78 0.79
BVAR 0.55 0.61 0.65 0.69 0.73 0.75 0.78 0.80
DSGE 0.80 0.83 0.85 0.87 0.88 0.90 0.91 0.91

av. red. Vs.

ANN 0.33 0.41 0.42 0.44 0.47 0.49 0.53 0.54
ModAv 0.36 0.38 0.41 0.43 0.46 0.49 0.52 0.53
BVAR 0.31 0.37 0.40 0.43 0.47 0.50 0.53 0.56
DSGE 0.59 0.55 0.56 0.58 0.59 0.62 0.63 0.64

GB 0.30 0.34 0.38 0.42 0.46 0.48 0.50 0.54
SPF 0.37 0.39 0.41 0.42 NaN NaN NaN NaN

Note: The column av all vars shows the RMSFE, of the respective subsample, averaged over all 8
variables. It thus provides a performance measure regarding the multivariate forecasting power of
each model. The column av red vars averages over GDP, inflation and the federal funds rate only.
h � 1, ..., 8 gives the forecasting horizon which reaches from 1-step ahead up to 8-steps ahead. The
GB forecasts are available up to 2015 only. As there is no FFR data from the SPF available, it is
averaged over GDP and Inflation forecasts only. The maximum forecast horizon of the SPF is 4.

Going more into detail focussing on all eight variables, BVAR forecast errors are the
smallest for horizons h � 1 : 4 and h � 7 (increasing with h), the ModAv provides the
best average forecast for h � 5, 6 and h � 8. The ANN itself slightly lacks behind which
might be due to the initially relatively small training sample containing large fluctua-
tions, against which the BVAR is robust due to initial parameter restrictions. Contrary,
the bad performance of the DSGE can possibly be explained by a different policy regime
prior Greenspan, which does not match the parameter assumptions of the model and
hinders the estimation. Hansen’s test for superior predictive accuracy supports these re-
sults, yielding large p-values for the mentioned models at respective forecast horizons
(see Table 12). Focussing on GDP, inflation and FFR forecasts (av. red. Vs.), these results
roughly remain the same, however the driving force behind the superiority of ModAv’s
long-term predictions is now the ANN forecast. This can be deduced from larger p-

23



values for the ANN compared to the BVAR (see Table 12). Including official forecasts in
this analysis, GB forecasts are on average better than SPF forecasts with slightly smaller
RMSFEs than the best models. However, for h � 5, 7, 8 the ModAv is found to have
superior predictive accuracy compared to all models (including official forecasts).

The analysis of individual variables within section 3 is shifted to the Appendix H.1,
as is the closer look at crises periods (Appendix H.2).

6. Discussion

There are several dimensions, along which this paper‘s results compare to other re-
search. There is the time dimension first, which is tackled by using different subsamples
when evaluating the results. This also includes the crises exploration. Second, indi-
vidual variables’ predictions can be contrasted against other traditional and machine-
learning models (variable and model dimension). The model dimension may then also
be considered for multi-variable predictions.

Time Dimension. First, it becomes clear that when conducting a forecasting comparison,
it is recommendable to consider diverse prediction subsets and/or to take the character-
istics of the respective period into account when evaluating forecast errors. Differences
in results between sections prove that the superiority of models can vary significantly
over time. In section 3, the statement by Karlsson (2013) can be supported, that BVARs
tend to be good multivariate forecasting tools, while the DSGE produces unexpectedly
large RMSFEs. This finding is in line with research by Edge and Gürkaynak (2010) who
show bad DSGE-based forecasting performance since the onset of the great moderation
which reflects the changed nature of macroeconomic fluctuations. The ANN plays a
minor role being superior only for the medium- to long-term forecasts of the reduced
set of variables, which can possibly be improved by using a deeper network. How-
ever, while the performance of ANN and DSGE improve along time (section 3 to 1), the
predicting power of the BVAR decreases. Finally, all models provide even better fore-
casts for section 1, with the ANN becoming more superior. This result is at contrast to
findings by Stock and Watson (2007) and Tulip (2009), who say that for inflation (and
output), since the beginning of the Great Moderation the forecastable component has
decreased which hindered precise predictions. The results at hand provide evidence,
that only the one-step ahead prediction of the Greenbook improves from section 1 to 2
(averaged over the reduced variable set), while at all remaining horizons, prediction ac-
curacies are decreased. Hence, the time dimension reveals an improvement of forecasts
in general and the ANN in particular over subsamples, pointing to nonlinearities and
hidden interrelations that can be captured by the network.

Individual Variable Model Dimension. The Smets and Wouters (2007) DSGE model is con-
trasted to Greenbook forecasts by Del Negro and Schorfheide (2013). The authors find
a short-run disadvantage for the model which decreases such that forecasts (for out-
put and inflation) become competitive for the medium-and long run. With the paper at
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hand, this finding can only be confirmed for medium to long-term GDP growth predic-
tions (however, the ANN-based predictions are even more precise). Averaged over the
(reduced) set of variables, the gap between Greenbook and DSGE forecasts increases,
which is why the result by Rapach et al. (2013) that both predictions converge over the
medium and long-term can also not be acknowledged. Furthermore, the BVAR seems
to be the best short-term predictor of FFR in section 1 and 2 which opposes the find-
ing by Karlsson (2013) that VARs typically do not have enough structure to generate
predictions about anticipated changes in interest rates.

How do this paper‘s results relate to other machine-learning-based forecasts of in-
dividual variables? There are several papers focussing on the construction of machine-
learning methods to predict individual variables. One such project is done by (Cook
and Smalter Hall, 2017) who use four different neural network architectures to make
univariate unemployment forecasts and compare these to SPF predictions. Their test
set lasts from 1997 to 2014 and since unemployment relates to GDP, GDP growth pre-
dictions from section 2 can roughly be compared to the authors’ results. All of the cre-
ated neural networks by (Cook and Smalter Hall, 2017) improve upon short-term SPF
forecasts, while the most advanced model (a so-called encoder-decoder network) beats
the SPF at all horizons. Through this paper‘s results, their findings can be confirmed
that (with the exception of the two step ahead prediction), the ANN-based forecasts are
around 10% better than those by the SPF for h � 2, 3, and the one step ahead predic-
tion is approximately equally precise. Multivariate inflation forecasting is for example
tackled by (Paranhos, 2021) who finds that long-short-term-memory (LSTM) networks
generate better predictions than benchmarks at long-term (8 quarters) horizon. A very
rich comparative analysis is conducted by (Medeiros et al., 2021), including a large set of
variables and models (also BVAR and diverse networks). Random Forests turn out to be
the best tool to predict inflation, with this superiority being even more pronounced dur-
ing 2001 to 2015. Since the authors also split their forecasts into different subsamples,
their findings can be compared to this paper‘s first and second section very well and can
attest this improvement among the models’ inflation predictions over all horizons and
especially the long-term precision. Another paper producing FFR forecasts in compar-
ison to multiple other linear and nonlinear models is done by (Hinterlang, 2020), who
finds neural networks to be the best prediction tool at all forecasting horizons, while the
superiority increases with further timely distance. This finding can partly be confirmed
by this analyses, as the ANN-based FFR forecasts only become superior for h � 4 : 8.

Multi-variable Model Dimension. The comparison between average BVAR and DSGE per-
formance in section 1 and 2 is still in favor of the BVAR, although the gap between both
models’ forecasts is reduced over time. This finding is in line with Binder et al. (2021)
but opposite to Edge and Gürkaynak (2010) who claim the Smets and Wouters (2007)
model to be mostly superior to a (non-GLP) BVAR. This might of course be driven by
different modeling and BVAR specifications and should not discriminate one model
class per se.

Furthermore, there is research by (Marcellino, 2004) and Verstyuk (2020) which - sim-
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ilar to this paper - deals with multivariate machine-learning-based forecasting of a set of
macroeconomic variables instead of a single variable. Based on 15 EMU macroeconomic
series from 1970 to 1997, Marcellino (2004) finds heterogenous results with respect to a
variety of forecasting methods including neural networks. The authors conclude, that
complex models work particularly well for some variables (e.g. GDP and the exchange
rate), while simple linear models outperform them for other series. The heterogeneity
between the models’ performance with respect to the 8 data series analyzed in this pa-
per can be affirmed. However, neither of them has the characteristics of a simple linear
model. Using five data series (GDP growth, inflation, commodity prices, FFR and bank
reserves), Verstyuk (2020) finds evidence for the LSTM network to be on average supe-
rior to the benchmark VAR with the test dataset defined as from 2015 to 2019. Similar
conclusions can be drawn from the RMSFEs from section 3 which underline superiority
of the ANN for h � 3 : 8 over all variables and for h � 1 : 8 for the reduced set of
variables.

7. Conclusion

This paper contributes a macroeconomic forecasting comparison between a struc-
tural DSGE model, a data-driven linear BVAR and an Artificial Neural Network within
a multivariate framework. A fully connected feed forward nonlinear autoregressive
neural network is contrasted to the DSGE model by Del Negro et al. (2015) and a BVAR
using optimized priors as in Giannone et al. (2015). Using real-time data for 8 macroeco-
nomic time series (GDP, inflation, federal funds rate, spread, consumption, investment,
wage, hours worked), a forecasting comparison based on expanding window estima-
tions is conducted and analyzed during various subsamples. Moreover, a distinct view
at crisis performance delivers further insights. The k-means approach to identify these
recessive times is another novel method and a contribution.

The results show, that when focusing on post-financial-crisis times, the ANN yields
the lowest RMSFE, averaged over all 8 variables, with forecasting horizons 3 to 8. The
core variables’ forecasts by the ANN even outperform conventional methods over all
horizons and official forecasts over nearly all horizons. This is amongst others driven
by up to 50% more precise inflation predictions. Comparing forecasts from 1999 to 2017,
the ANN is superior for the medium and long-run forecasts. Considering all variables,
this drives the ModAv, focussing on core variables (GDP, inflation and FFR), the ANN
itself is the optimal predictor. Whereas in the short-term, the BVAR succeeds, medium-
term GDP predictions by the ANN are about 10% and inflation forecasts up to 15%
better than benchmarks. FFR forecasts can be improved by up to 60% when using the
ANN. Averaging over forecasts between 1987 and 2017, the long-term predictions (5 to
8 quarters ahead) by ANN for GDP, inflation and the federal funds rate are more pre-
cise than conventional models’ and drive the ModAv23 as best forecasting tool. During

23As explained in Section 2.3, an average of all models’ predictions is calculated as a fourth forecasting
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the same time, BVAR-based short-term predictions are better than DSGE-based ones.
Focusing on forecasting performance during recessions, the ANN proves to be a robust
tool for long-term predictions during crises while the BVAR should be considered for
the near horizons.

Concluding over the mentioned results, this paper provides evidence for DSGE
models to produce appropriate short-term predictions after 1999. The BVAR is suited
well when producing average forecasts including the disruptive times prior 1999, espe-
cially in the short-run. Furthermore, in several cases, a weighted average of all forecasts
constitutes a robust alternative. The ANN however, which is presented as the novel
forecasting method in this paper, delivers an overall gain. While its superiority varies
with the out-of-sample periods to be forecasted, predictions improve the closer the fore-
casted periods move towards present times.

The literature on macroeconomic forecasting with neural networks has experienced
increasing attention in the recent years. As the results show, this is justifiable and de-
sirable. The specifications of neural networks seem to provide an unlimited amount
of variations to forecasting projects and depending on the data and question to solve,
the optimal specification might be difficult to find. It would thus be desirable to com-
pare more networks in a comparative analysis, e.g. the mentioned LSTM networks.
Further, one can expect improved forecasts by using nowcasts and by enlarging the
dataset. It would be of interest to investigate, whether these modifications affect the
models’ performance differently. These extensions are left for future research. Yet, it is
clear, that neural networks deliver a substantial advantage compared to conventional
methods. As these findings indicate, nonlinear data-driven ANNs are a useful method
when it comes to macroeconomic modeling and forecasting and should be added to the
macroeconomists’ toolkit.
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Appendix

A. ANN
A.1. Bayesian Regularization Backpropagation

Bayesian regularization means a Bayesian estimation of the regularization param-
eters, in this case with a Gauss-Newton approximation to the Hessian matrix. This
method can conveniently be combined with the Levenberg-Marquardt algorithm (Ha-
gan and Menhaj, 1994). Here, backpropagation is used to calculate the Jacobian of the
performance function with respect to weights and biases. According to Foresee and
Hagan (1997), page 3, the approach follows these steps:

1. Initialize α, β and the weights.
2. Take one step of the Levenberg-Marquardt algorithm to minimize the objective

function
Fpwq � βED � αEW .

3. Compute the effective number of parameters

γ � N � 2αtrpHq�1

making use of the Gauss-Newton approximation of the Hessian available in the
Levenberg-Marquardt training algorithm:

H � ∇2Fpwq � 2βJT J � 2αIN,

where J is the Jacobian matrix of the training set errors.
4. Compute new estimates for the objective function parameters

α �
γ

2EWpwq

β �
n� γ

2EDpwq
.

5. Iterate through steps 1 to 3 until convergence.

B. K-Means Clustering
The k-means clustering approach, used to identify crisis periods, follows Lloyd (1982)

and assigns n observations to exactly one of k clusters which are defined by centroids.
The iterative algorithm proceeds as follows:

1. Randomly choose k initial cluster centers.
2. Compute point to cluster centroid distances of all observations to each centroid.
3. Assign each observation to the cluster with the closest centroid.
4. Compute average of observations in every cluster and obtain k new centroid loca-

tions.
5. Loop through steps 2 to 4 until cluster assignments converge.
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C. BVAR
C.1. The GLP Prior

In order to choose the tightness (the informativeness) of the prior optimally, Gian-
none et al. (2015) suggest to use Bayesian techniques as it is conceptually identical to the
inference of all other unknown model parameters. Let ppy|θq be the likelihood function
of the model with a prior distribution pγpθq with θ being the VAR model parameters
and γ the hyperparameters. Based on assuming a hierarchical model and rewriting
pγpθq with ppθ|γq, the posterior can be obtained applying Bayes’ Law:

ppγ|yq9ppy|γqppγq

with ppγq being the prior density of the hyperparameters (the hyperprior) and ppy|γq
constituting the marginal likelihood. Hereby, the authors take the most frequently used
conjugate priors into account: Minnesota, sum of coefficients and dummy initial obser-
vation priors. Key concept of their procedure is the automatic choice of the appropriate
amount of shrinkage, i.e. the selection of tighter priors in case that many unknown co-
efficients are involved relative to the available data, and looser priors vice versa. The
prior distributions are assumed to be of normal-inverse-Wishart form:

Σ � IWpΨ; dq
β|Σ � Npb, ΣbΩq

where Ψ, d, b and Ω are functions of hyperparameters γ (d � n� 2 and Σ � Ψ{pd� n�
1q).

Three prior densities are combined for the unconditional prior: The Minnesota prior
hinges on the assumption that every variable follows a random walk process (with
drift). The moments of this prior are characterized by

ErpBsqij|Σs �

#
1 if i � j and s � 1
0 otherwise

covppBsqij, pBrqhm|Σq �

$&
%λ2 1

s2
Σih

Ψj{pd� n� 1q
if m � j and r � s

0 otherwise

where the most important hyperparameter, which drives the overall tightness of this
prior, is λ. Next, the sum-of-coefficients prior is considered and implemented using
a Theil mixed estimation based an n artificial observations (with n � number of vari-
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ables). Giannone et al. (2015) create a set of dummy observations

y�
n�n

� diag
�

ȳ0

µ




x�
n�p1�npq

�

�
0

n�1
, y�, ..., y�

�

where diagpνq is the diagonal matrix with the vector ν on the main diagonal and where
ȳ0 is this vector containing the average of the first p observations of each variable. The
variance of these prior beliefs is controlled by µ, which is the hyperparameter of interest
here. For µ Ñ inf, one gets an uninformative prior and for µ Ñ 0, there is a unit
root in every equation which rules out cointegration. The third prior (dummy-initial-
observation) is implemented by

y��
1�n

�
ȳ0
1

δ

x��
1�p1�npq

�

�
1
δ

, y��, ..., y��
�

where the tightness of the prior is controlled by δ. It becomes uninformative when
δ Ñ inf and for δ Ñ 0, all variables are forced to their unconditional mean.

The resulting set of hyperparameters λ, µ, δ and Ψ are treated as additional model
parameters, with their hyperpriors being gamma densities, with mode equal to 0.2, 1
and 1 and standard deviations equal to 0.4, 1 and 1. Lastly for Σ, the hyperprior for
Ψ{pd � n � 1q, the authors select an Inverse-Gamma distribution with scale and shape
equal to 0.022. The resulting marginal likelihood weighs the in-sample fit against the
model-complexity. As to Giannone et al. (2015), this procedure produces precise out-of-
sample predictions using point and density forecasts.

According to Giannone et al. (2015), the joint posterior density is not available in
closed form and is thus simulated from a Gaussian proposal distribution based on a
Markov chain Monte Carlo (MCMC) with Metropolis Hastings algorithm. In this paper,
I use the original codes offered by the authors. Similar to a DSGE model setting, this
BVAR algorithm also requires to define an appropriate jump size which is calibrated to
yield an acceptance rate around 25%.

D. DSGE
D.1. The DSGE Model Solution

To solve the DSGE model, one can rewrite intertemporal optimization problems of
the agents using Bellmann equations. The equilibrium law of motion is then written as

st � Φpst�1, ϵt, θq.
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Here, st is a vector of state variables and ϵt is a vector including the innovations of
structural shocks. The equilibrium conditions by the log-linearized DSGE model form
a system of linear rational expectations difference equations which can be written as

Γ0pθqst � Γ1pθqst�1 �Ψpθqϵt �Πpθqηt

with η is a vector of rational expectations forecast errors. This system can be solved
using the technique by Sims (2002) which allows to express ηt as a function of ϵt subject
to the constraint of a non-explosive law of motion of st. The solution is then given by

st � Φ1pθqst�1 �Φϵpθqϵt

where Φ1 and Φϵ are functions of model parameters θ. A simpler representation of the
measurement equation is given by

yt � Ψ1pθqst �Ψ0pθq.

The state-space representation of the DSGE model is given by the last two equations.

D.2. Measurement Equations
In order to estimate the model, a set of measurement equations is defined that relate

elements of st to the set of observable variables (see Pfeifer (2014) for a reference):

Output growth �γ� pyt � yt�1 � ztq

Consumption growth�γ� pct � ct�1 � ztq

Investment growth �γ� pit � it�1 � ztq

Real wage growth �γ� pwt �wt�1 � ztq

Hours worked �l̄ � lt
Inflation �π� � πt

FFR �R� � Rt

Spread �SP� � EtpR̃k
t�1 � Rtq.

D.3. DSGE Model Estimation
The estimation of the DSGE model now builds on the introduced state-space repre-

sentation. Assuming that the exogenous shocks are Gaussian, the likelihood function
ppy|θq for the observable data given the model parameters θ can be evaluated with the
Kalman filter. The posterior parameter distribution ppθ|yq can then be generated using

ppθ|yq9ppy|θqppθq,

where ppθq is the likelihood function of the prior parameter distribution. A Metropolis-
Hastings algorithm is then employed since no analytic expression exists for the pos-
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terior distribution. Choosing a starting point for the parameters θ0, several steps are
repeated in a loop (see e.g. Berg (2016) for a detailed description which I summarize
here). Draw θ� from a jumping distribution Jpθ�|θ j�1q � Npθ j�1, c, Σmq, where the in-
verse of the Hessian Σm is computed at the posterior mode and the scaling constant c is
chosen to produce an acceptance rate of 25 % to 33%. Then, the acceptance ratio is cal-
culated by r � ppθ�|yq{ppθ j�1|yq. After randomly drawing ν from Up0, 1q, the proposal
θ� is either accepted or discarded and the jumping distribution is updated. Further, a
draw of the state variables sj|θ j is obtained from Npŝj, Pjq, where both are computed
with the Kalman filter. Now, generating ϵ

j
T�1, ..., ϵ

j
T�H from ϵt � Np0, Iqq, a path for the

model variables may be established using the transition equation:

st � Φm
1 pθ

jqsj
t�1 �Φm

ϵ pθ
jqϵ

j
t.

Having simulated the paths of the state variables, a path for the observational variables
may be discarded relying on the measurement equations:

ŷj
t � Ψ1pθ

jqst �Ψ0pθ
jq.

Hence, a sample of forecasts are generated from the posterior predictive distribution.

D.4. Settings Estimation
In the following, some important settings for the Bayesian estimation are described

in more detail. All unmentioned features are left on default values.

Table 4: Settings for Bayesian Estimation

Feature Setting Description

presample 4 Number of values to be skipped
lik_init 1 Kalman filter initialization
mh_replic 20.000 Number of replications
mh_nblocks 2 Number of parallel chains
mh_drop 0.5 Fraction of parameter vectors to be dropped
mh_jscale 0.275 Scale parameter of the jumping distribution’s covariance matrix
mode_compute 4 (6) Specification of optimizer for mode computation

Setting the presample to 4 makes the algorithm skip the first four observations be-
fore evaluating the likelihood. However, the values are used as a training sample for
starting the Kalman filter iterations. Setting this value to 4 makes the DSGE estimation
comparable to a BVAR(4) and ANN(4).

The initialization of the Kalman filter is steered with lik_init. A value of 1 can be
used for stationary models (as DNGS15) and means that the initial matrix of variance of
the error forecast is set equal to the unconditional variance of the state variables.
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Several settings can be adjusted for the Metropolis-Hastings algorithm. First, the
number of replications is defined by mh_repplic and set equal to 20000. The applied
number of parallel chains (mh_nblocks) is set to 2. Based on these settings, the Monte
Carlo Markov Chain (MCMC) diagnostics are generated with the convergence diagnos-
tics according to Brooks and Gelman (1998)24. These are based on comparing pooled
and within MCMC moments and the length of the highest probability density inter-
val covering 80% of the posterior distribution. Another parameter, mh_drop is set to
0.5,which defines that 50% of the initially generates parameter vectors are dropped as a
burn-in before using posterior simulations. Last, the mh_jscale which is the scale param-
eter of the jumping distribution’s covariance matrix is set. It must be tuned to obtain an
acceptance ratio of 25% to 33%. The idea behind this is to increase the variance of the
jumping distribution if the acceptance ratio is too high and vice versa. For this project,
a value of 0.275 leads to the desired acceptance ratio and is not changed during the
expanding window procedure.

Further, the optimizer for the mode computation mode_compute is specified. Most of
the vintages in the expanding window procedure are estimated by the so-called csmin-
wel (around 85%, mode_compute=4), for the remaining vintages this setting leads to errors
during the estimation and is thus replaced by mode_compute=6. This applies a Monte-
Carlo based optimization routine first, the goal of which is to identify a region to start
the Metropolis-Hastings algorithm and an initial estimate of the posterior covariance
matrix of the parameters to be estimated. Advantageous is the fact that the MH al-
gorithm may start from a point with a high posterior density value and not from the
posterior mode, to estimate the covariance matrix of the jumping distribution. The fa-
vored algorithm, however, is the csminwel, developed by Sims et al. (1999), which is
often used for Bayesian estimation because of its properties. The algorithm minimizes
using a quasi-Newton method with BFGS update of the estimated inverse hessian. It is
known to be very robust against certain pathologies common to likelihood function as
it tries random search directions and avoids getting stuck at flat spots for example.

24For multivariate problems, the procedure does not strictly follow Brooks and Gelman (1998), but
transfers their approach to the range of posterior likelihood function instead of the individual parameter.
The posterior kernel is the used to combine the parameters into a scalar statistic and check its convergence
using the authors univariate convergence diagnostic.
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E. Data
E.1. Data Sources

Table 5: Data Sources and Access URL

FRED https://fred.stlouisfed.org
ALFRED https://alfred.stlouisfed.org
RTDSM Real-Time Data Set for Macroeconomists

https://www.philadelphiafed.org
Greenbook Predictions https://www.philadelphiafed.org
SPF Predictions https://www.philadelphiafed.org

E.2. Data Transformation
Per capita growth rates are computed taking advantage of the population level mea-

sure. As Pfeifer (2014) and Edge and Gürkaynak (2010) recommend, a smoothed value
of this series should be used to adjust data from other sources25. The smoothed popu-
lation growth rate is given by

PGt � HPpCNP16OVt{CNP16OVt�1q.

Leaning on Del Negro et al. (2015), the 8 desired variables are generated as follows:

Output growtht �100 � ln
�

ROUTPUTt

ROUTPUTt�1
� PG�1

t




Consumption growtht�100 � ln
�

CONSt

CONSt�1
�

GDPDEFt�1

GDPDEFt
� PG�1

t




Investment growtht �100 � ln
�

FPIt

FPIt�1
�

GDPDEFt�1

GDPDEFt
� PG�1

t




Real wage growtht �100 � ln
�

COMPNFBt

COMPNFBt�1
�

GDPDEFt�1

GDPDEFt




Hours workedt �100 � ln
�

AWHNONAGt � CE16OVt{100
CNP16OVt



26

Inflationt �100 � ln
�

GDPDEFt

GDPDEFt�1




FFR �
1
4
� EFF

Spread �
1
4
� pBAA10YMtq

25Following the example in Pfeifer (2014), the HP-filter with a smoothing parameter of 10,000 is applied.
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While this data specification is required by the DSGE model at hand, the BVAR and
the ANN are more flexible with respect to the data format. Following the argumen-
tation by Karlsson (2013), saying that in terms of root mean squared error-measured
forecasting performance, a variable specification in differences succeeds one in levels,
and for the sake of comparability of the resulting forecasts, the BVAR and also the ANN
are estimated with the identical transformed data as the DSGE27. The official forecast-
ers’ data on real GDP growth is also transformed to obtain population growth adjusted
per capita values.

27While a specification in levels can make use of any co-integration between the variables, a spec-
ification in differences offers some robustness in the presence of structural breaks. The RMSE of the
difference-specification is on average 11% smaller.
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G. Additional Results

Figure 11: Relative RMSFE Section 1
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Note: This figure shows RMSFEs of individual variables as percentage deviation
from the ANN over all forecast horizons.
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Figure 12: Relative RMSFE Section 2
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Note: This figure shows RMSFEs of individual variables as percentage deviation
from the ANN over all forecast horizons.

H. Additional Analyses
In this section, more detailed analyses are provided. The overarching forecasting

section, Section 3 is shown at first. Further, a closer look is taken at the individual crises
periods around the 2001 and 2008 crises. Further, in order to investigate the advantage
of multivariate over univariate methods on the one hand, and a source of the superiority
of the ANN on the other hand, statistical tests are provided.
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H.1. 1987Q3 to 2017Q4 (Section 3)

Figure 13: Relative RMSFE Section 3
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Note: This figure shows relative RMSFEs, taking the ANN as benchmark, over all
forecast horizons.

Figure 13 gives the RMSFEs relative to the ANN for each individual variable. It be-
comes clear that with respect to GDP, the medium-term predictions by the ANN are
superior to other models and the official forecasts, BVAR forecasts are better but infe-
rior to officials’ in the short run, while in the long-run both DSGE and BVAR provide
the best predictions. The picture changes looking at inflation: although other research
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claims that starting inflation forecasts in the great moderation is difficult (Stock and
Watson (2007) and Tulip (2009)), the ANN can improve upon the other models, how-
ever it does not approach the official forecasts. With respect to the federal funds rate,
short-term predictions are dominated by the BVAR and the GB, while from horizon 5
onwards, the ANN succeeds. All of these findings are supported by the test results
for superior predictive accuracy (SPA), shown in Table 12. Relative RMSFEs of the re-
maining variables are shown in Figure 14. It proves overall inferiority of the ANN with
respect to investment forecasts, the spread is forecasted well in the long-term, while for
wage and consumption the results fluctuate over forecast horizons.

H.2. Forecasting Results by Crisis Periods
Besides the average forecasting performance within certain time segments, an im-

portant aspect is a model’s ability to provide exact forecasts during disruptive periods.
Therefore these predictions are extracted, making use of the identification by the k-means
clustering of Section 4.2. The main crises are the second golf war around 1990, the 2001
recession which followed the burst of the dot com bubble and the terror attacks on
September 11th, and the financial crisis which lasted roughly from 2007 to 2009. For
the evaluation, all forecasts for the identified crises periods are taken into account. The
results are given in Table 6.

First, as expected, the RMSFEs are larger than those in Table 3 which takes crisis and
normal times into account. Considering the performance over all variables, the BVAR
maintains the leading position in the short-term (h � 1, 2) while it drives the even lower
RMSFE of the ModAv for h � 3 and 4. For the following horizons h � 5 : 8, however, the
ANN produces lower RMSFEs which is captured by the ModAv (see Table 14 and 15 for
SPA test results supporting these interpretations). This is remarkable, as the comparison
of results from section 3 and the crisis evaluation discloses the ANN as a robust (over
variables) medium to long-term crisis prediction tool. A similar observation can be
made for the reduced set of variables as the ModAv produces the lowest RMSFEs for
h � 2 : 8, which together with the large SPA-test p-values underlines the importance of
ANN-based predictions already for the nearer periods (h � 3 : 8) in crisis times.

Crisis 2001. Based on Figure 15, one can take a closer look at forecasts during the 2001
recession. The figure shows six plots, each belonging to forecasts made in the vintage
stated in the title (2000Q3 to 2001Q4), with one- up to eight-quarter ahead forecasts. The
actual (revised) data is plotted in black. Starting with the GDP forecast in 2000Q3, one
can see that neither model is able to capture the path of the data (which is especially
difficult for the onset of a crisis), but the DSGE short-term prediction is closest to the
actual, as is the ANN-based medium-term prediction. Going a step further (2001Q1),
the DSGE can somehow trace the drop in GDP growth around 2001Q3, but the recovery
thereafter is better forecasted by BVAR and ANN. Based on vintage 2001Q3, the recov-
ery path is predicted more closely by the ANN. In these graphs, the nonlinear (and
thereby also more volatile character) of the ANN as a model becomes clear. The infla-
tion forecasts for the one-step ahead prediction are very precise based on 2000Q3 and
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Figure 14: Relative RMSFE Section 3
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Note: This figure shows RMSFEs of individual variables as percentage deviation
from the ANN over all forecast horizons.

Q4, the long-term however is not accurately predicted. Also in 2001Q1, the ANN-based
one-step forecast performs very well. Only during the onset of the recovery (2001Q3),
the models provide medium- and long-term forecasts mapping the actual inflation path
better. Figure 15 shows that also for this variable all models have difficulty predict-
ing the onset of the crisis accompanied by a sharp drop in interest rates. The ANN is
the only model including a drop in FFR in its medium to long-term forecasts which,
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Table 6: RMSFE Crises Periods

Model h � 1 h � 2 h � 3 h � 4 h � 5 h � 6 h � 7 h � 8

av. all Vs.

ANN 0.75 0.92 0.90 0.93 0.95 0.95 1.03 1.06
ModAv 0.75 0.84 0.86 0.88 0.92 0.93 1.00 1.03
BVAR 0.69 0.79 0.86 0.89 0.97 0.98 1.01 1.06
DSGE 0.99 1.00 1.07 1.07 1.11 1.13 1.16 1.18

av. red. Vs.

ANN 0.40 0.54 0.54 0.58 0.62 0.63 0.70 0.69
ModAv 0.44 0.47 0.50 0.54 0.59 0.60 0.67 0.68
BVAR 0.39 0.48 0.53 0.57 0.64 0.65 0.71 0.73
DSGE 0.75 0.62 0.61 0.63 0.66 0.68 0.75 0.76

GB 0.42 0.48 0.49 0.49 0.50 0.49 NaN NaN
SPF 0.44 0.48 0.51 0.50 NaN NaN NaN NaN

Note: The column av all vars shows the RMSFE, of the respective subsample, averaged over all
8 variables. The column av red vars averages over GDP, inflation and the federal funds rate only.
h � 1, ..., 8 gives the forecasting horizon. The GB forecasts are available up to 2015. As there is no
FFR data from the SPF available, it is averaged over GDP and Inflation forecasts only. The maximum
forecast horizon of the SPF is 4.

however, appears later than actual. Only in 2001Q3, the ANN and Greenbook forecasts
capture the tendency of actual FFR paths again.
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Financial Crisis. During the financial crisis, some more differences between the mod-
els become visible. It seems that again, the recovery can be more precisely forecasted
than the downturn. Figures 16 and 17 show GDP forecasts based on vintages 2007Q2 to
2009Q2. While no model can forecast the downturn in 2007Q2, the ANN-predicted GDP
growth path mimics the actual path remarkably well. One quarter ahead, in 2007Q3, it
is the only model (and far from the official forecasts) capturing the drop in 2008Q3/Q4.
Forecasts in 2008Q4 can finally capture the downturn in their short-term predictions
while also the recovery path is predicted pretty accurately by all models. There is a sim-
ilar picture regarding inflation forecasts during the onset of the crisis. It improves with
vintage 2008Q4, where the DSGE and ANN are able to capture the upward trend, while
the BVAR forecasts negative values in the long run. Based on 2009Q2, the predictions
by the DSGE and ANN become precise again over all horizons, while the BVAR contin-
ues with too low inflation forecasts. Inflation forecasts fail to capture the true path in
2007Q4 and get better one quarter after. The official forecasts are, however, much more
precise until 2008Q1. As with GDP growth, the recovery is more precisely predicted
starting with forecasts from 2008Q4. The FFR predictions by the ANN from 2007Q2 are
extraordinarily close to the actual path. Subsequently, neither model is able to capture
well the decrease to the zero lower bound. It takes until 2008Q4 that the models sense
the downturn and now undershot with their medium- to long-term predictions. Based
on the information set in 2009Q2, at least the ANN shows a fluctuation around the ZLB.
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The crises analysis provides novel insights and evidence that the ANN-based fore-
casts during recessions improve upon the other models during the medium and long
run (for all variables) and even in the nearer term for the reduced variable set. Hence,
ANN can be categorized as a robust tool especially for forecasts during disruptive times.
Similar results are found by (Medeiros et al., 2021) who use NBER classifications of re-
cessions versus expansions to test whether the superiority of the random forest model
varies. The authors find gains of the random forest, which are particularly large during
and after the great recession. These results can be confirmed for the ANN through the
crisis analysis on the one hand, and the increased superiority of the ANN during section
1 on the other hand. Another crisis analysis is conducted by Wieland and Wolters (2011)
who compare various DSGE models with professional forecasters with respect to their
predictive power during recessions. First, the authors’ finding that DSGE models com-
pare better to professional forecasts during medium-term crises predictions (h � 2 : 3)
can be supported, however BVAR and ANN have more predictive power. Furthermore,
the detailed analyses of the 2001 and the financial crisis reveal particularly good pre-
dictions of the recovery paths by all models, which matches the finding by Wieland
and Wolters (2011) and by Del Negro et al. (2015). However, following Binder et al.
(2021), this might be a characteristic of the expanding window analysis in comparison
to a rolling window framework, which produces better downturn predictions.
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I. Statistical Tests
I.1. Uni- versus Multivariate Forecasts

Since in the forecasting literature, there exists a variety of univariate forecasting
methods opposed to multivariate approaches, the question arises which information
set provides a good basis for exact predictions. Peña and Sánchez (2007) develop a
simple test to measure the advantages of the multivariate setup in advance of build-
ing the model itself28. The authors apply their method to linear models (ARMA versus
VARMA); improvements by using the joint dynamics can be expected in case that the
timeseries are related.

PM|Uphq � 1�
σ2

Mphq
σ2

Uphq
(13)

is the measure for the expected decrease in the mean squared forecast error of the mul-
tivariate model compared to the univariate one (σ2

Uphq � β1hVβh and V � Epϵtϵ
1
tq)

29.
Given a set of observations, the forecast errors are estimated by OLS of an AR(k) model
and PM|Uphq can be calculated. A measure of the predictability is given by

F̂M|Uphq � 1�
FPEMphq
FPEUphq

(14)

where FPE is the final prediction error criterion (Akaike, 1970). The authors suggest,
that an analyst can use P̂M|Uphq as a potential benchmark which, in case of inefficient
modeling, has a lower limit of F̂M|Uphq. As additional information, P̂Uphq and P̂Mphq
measure the predictability of the series for different forecast horizons, i.e. the decrease
in MSFE by using the univariate (U)/multivariate (M) model with respect to using the
unconditional mean.

Test results for the analyzed dataset are given in Table 16 in the Appendix. Following
the division into several sections, three subsamples are used which are equivalent to the
first sample of each analyzed section (1964:1987, 1964:1999, 1964:2010). Evidence is pro-
vided, that most variables profit from a multivariate forecasting setup, irrespective of
the subsample. Going into detail, GDP benefits the most in the short and medium term,
where a multivariate setup improves predictions by up to 33%. For inflation, the advan-
tages increase with the forecasting horizon (38% for h=8 in subsample 1). With respect
to FFR, the benefits of a multivariate setup increase over time and horizons (largest in
2010, h=8 with up to 24%). Also spread, investment and the hours worked profit a lot
from multivariate approaches, while wage and consumption show less improvements.

These findings justify the focus on multivariate models, nevertheless, also easy uni-
variate benchmarks as a simple random walk process (RW) and an autoregressive model
(AR(1:4)) are computed. While these models did not show bad results for some vari-

28These codes are publicly available on the authors’ website.
29This equation shows that when the model is known, multivariate forecasts cannot be less precise than

univariate ones. However, when the parameters are estimated this may not be the case.
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ables, they could not keep up with the variable robustness of the other multivariate
models. Similar results are found by (Medeiros et al., 2021), where RW and AR mod-
els are consistently beaten. As this project‘s goal is to compare models with respect to
their forecasts from a modeling perspective (i.e. being robust across multiple variables),
the simple univariate benchmarks are neglected. Furthermore, while the test deals with
linear methods only, it is supposed that nonlinear models can profit even more from the
enlarged information set. Thus, the multivariate contemplation can be interpreted as
one driver of the superiority of the ANN as the joint dynamics can be exploited best by
the network structure (Chang et al., 2018).

I.2. Linearity Tests
To further investigate the interrelation of the analyzed timeseries, multivariate and

univariate linearity tests are conducted, again for three subsamples (1964:1987, 1964:1999,
1964:2010). The tests taken into account are Tsay (1986), as well as Teräsvirta et al.
(1993)30. The H0 hypothesis of linearity can be rejected at the 1% significance level for
the multivariate inspection in any subsample (see Table 7). Examining every variable
individually as univariate processes, the null hypothesis is mostly rejected for inflation,
FFR and the spread. GDP, wage, investment and hours contain only some degree of
nonlinearity, while consumption appears to be linear in its univariate form. This infor-
mation sheds light on the heterogeneity of the forecasting results in between variables,
and why simple linear models perform well for some variables and complex ones better
for others, as in Marcellino (2004). Since especially the multivariate test proves nonlin-
earity of the joint dynamics of the dataset, this analysis provides further evidence that
allowing for nonlinearities is key to improving macroeconomic forecasts (a similar con-
clusion is drawn by Medeiros et al. (2021)).

It should be mentioned, however, that besides multiple nonlinear data-driven ap-
proaches, there are also nonlinear theoretical models which might yield better forecasts,
specifically of crises situations (Del Negro and Schorfheide, 2013). Nevertheless, these
approaches are quite complicated and require even more processing power than the
linearized versions31. Due to this fact, this research project concentrates on a linearized
DSGE model.

30Codes are used and made publicly available by Mohammadi (2020).
31The required processing power within this project was the largest for the DSGE model which took

approximately 45 minutes for the estimation of one vintage. The BVAR was faster with about one minute
processing time and the neural network was the fastest with less than one minute per vintage.
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Table 7: Multivariate and Univariate Nonlinearity Tests

1987 1999 2010
Teräsvirta Tsay Teräsvirta Tsay Teräsvirta Tsay

All Variables 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000***

GDP 0.135 0.717 0.000*** 0.324 0.623 0.827
Inflation 0.083* 0.763 0.017** 0.003*** 0.000*** 0.000***
FFR 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000***
Spread 0.001*** 0.023** 0.001*** 0.023** 0.001*** 0.023**
Wage 0.200 0.454 0.053* 0.192 0.003*** 0.019**
Consumption 0.373 0.488 0.271 0.540 0.184 0.584
Investment 0.012** 0.159 0.013** 0.114 0.013** 0.182
Hours 0.086* 0.190 0.086* 0.190 0.086* 0.190

Note: P-Values for linearity tests by Teräsvirta et al. (1993) and Tsay (1986) are shown. Stars
indicate significance levels (��� � 1%, �� � 5%, � � 10%). H0: The time series is/are linear. All
variables shows the p-values for the multivariate nonlinearity test.

I.3. Test for Superior Predictive Accuracy
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Table 8: SPA with ANN (Section 1)

h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8

Av. all V. red. Models
ANN 0.165 0.007 1.000 1.000 1.000 1.000 1.000 1.000
BVAR 1.000 1.000 0.140 0.088 0.004 0.011 0.003 0.002
DSGE 0.002 0.007 0.001 0.002 0.000 0.001 0.000 0.010

Av. red. V. all Models
ANN 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
BVAR 0.020 0.444 0.043 0.172 0.107 0.227 0.407 0.264
DSGE 0.004 0.070 0.000 0.000 0.000 0.000 0.000 0.000
GB 0.000 0.000 0.000 0.005 0.001 0.071 0.155 0.008
SPF 0.004 0.167 0.280 0.349 NaN NaN NaN NaN
red. Models
ANN 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
BVAR 0.018 0.422 0.030 0.119 0.100 0.145 0.275 0.181
DSGE 0.002 0.067 0.000 0.000 0.000 0.000 0.000 0.000

GDP all Models
ANN 0.614 0.155 0.049 0.031 0.381 0.384 0.003 0.003
BVAR 0.115 0.210 0.085 0.100 0.219 0.151 0.377 0.108
DSGE 0.519 1.000 0.293 0.281 1.000 1.000 1.000 1.000
GB 0.151 0.164 0.006 0.188 0.026 0.168 0.022 0.000
SPF 1.000 0.645 1.000 1.000 NaN NaN NaN NaN
red. Models
ANN 1.000 0.254 0.028 0.013 0.344 0.298 0.004 0.003
BVAR 0.080 0.221 0.066 0.064 0.169 0.097 0.311 0.112
DSGE 0.523 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Infl all Models
ANN 0.599 1.000 1.000 1.000 1.000 1.000 0.049 0.241
BVAR 0.001 0.007 0.000 0.023 0.001 0.051 0.007 0.000
DSGE 0.271 0.043 0.003 0.002 0.000 0.004 0.001 0.002
GB 1.000 0.002 0.001 0.001 0.040 0.227 1.000 1.000
SPF 0.511 0.400 0.209 0.210 NaN NaN NaN NaN
red. Models
ANN 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
BVAR 0.001 0.007 0.000 0.017 0.001 0.037 0.004 0.000
DSGE 0.186 0.070 0.010 0.013 0.000 0.002 0.002 0.001

FFR red. Models
ANN 0.002 0.001 0.013 0.116 0.275 0.390 1.000 1.000
BVAR 1.000 1.000 1.000 1.000 1.000 1.000 0.388 0.279
DSGE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Note: This table shows results for the test for superior predictive accuracy by Hansen (2005). Either ANN or ModAv is included in
the set of models. Forecasts for Av. red. V. (GDP, inflation, FFR) are tested; Av. all V. is the test for the average over all 8 variables.
The red. Models setup contains ANN/ModAv, BVAR and DSGE, the all Models specification also contains Greenbook and SPF
forecasts. The model stated per line is treated as the Benchmark, which is tested against the alternatives (red. Models or all Models).
Small p-values mean that one can reject the null hypothesis of SPA; large p-values are in favor of the respective benchmark model.
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Table 9: SPA with ModAv (Section 1)

h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8

Av. all V. red. Models
ModAv 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
BVAR 0.188 0.096 0.079 0.001 0.025 0.031 0.056 0.028
DSGE 0.000 0.000 0.000 0.000 0.002 0.002 0.002 0.020

Av. red. V. all Models
ModAv 1.000 1.000 0.504 0.442 0.074 0.054 0.023 0.026
BVAR 0.070 0.255 0.290 0.371 1.000 1.000 1.000 1.000
DSGE 0.000 0.019 0.000 0.000 0.000 0.000 0.000 0.000
GB 0.004 0.000 0.003 0.030 0.007 0.199 0.241 0.129
SPF 0.001 0.022 1.000 1.000 NaN NaN NaN NaN
red. Models
ModAv 1.000 1.000 1.000 0.389 0.048 0.032 0.011 0.017
BVAR 0.058 0.244 0.278 1.000 1.000 1.000 1.000 1.000
DSGE 0.000 0.011 0.000 0.000 0.000 0.000 0.000 0.000

GDP all Models
ModAv 0.532 0.705 0.119 0.249 0.356 0.458 1.000 0.376
BVAR 0.121 0.136 0.091 0.043 0.051 0.041 0.336 0.052
DSGE 0.547 1.000 0.299 0.367 1.000 1.000 0.530 1.000
GB 0.190 0.158 0.005 0.188 0.007 0.156 0.024 0.000
SPF 1.000 0.670 1.000 1.000 NaN NaN NaN NaN
red. Models
ModAv 1.000 0.612 0.078 0.126 0.361 0.257 1.000 0.370
BVAR 0.070 0.104 0.066 0.026 0.039 0.023 0.290 0.052
DSGE 0.544 1.000 1.000 1.000 1.000 1.000 0.514 1.000

Infl all Models
ModAv 0.557 0.085 0.010 1.000 1.000 0.222 0.011 0.032
BVAR 0.001 0.002 0.000 0.023 0.026 0.218 0.005 0.004
DSGE 0.268 0.045 0.004 0.002 0.000 0.000 0.000 0.000
GB 1.000 0.001 0.001 0.021 0.480 1.000 1.000 1.000
SPF 0.510 1.000 1.000 0.298 NaN NaN NaN NaN
red. Models
ModAv 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
BVAR 0.000 0.002 0.004 0.021 0.019 0.366 0.331 0.262
DSGE 0.172 0.044 0.009 0.001 0.000 0.000 0.000 0.000

FFR red. Models
NAR 0.001 0.000 0.000 0.000 0.001 0.001 0.001 0.001
BVAR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
DSGE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Note: This table shows results for the test for superior predictive accuracy by Hansen (2005). Either ANN or ModAv is included in
the set of models. Forecasts for Av. red. V. (GDP, inflation, FFR) are tested; Av. all V. is the test for the average over all 8 variables.
The red. Models setup contains ANN/ModAv, BVAR and DSGE, the all Models specification also contains Greenbook and SPF
forecasts. The model stated per line is treated as the Benchmark, which is tested against the alternatives (red. Models or all Models).
Small p-values mean that one can reject the null hypothesis of SPA; large p-values are in favor of the respective benchmark model.
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Table 10: SPA with ANN (Section 2)

h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8

Av. all V. red. Models
ANN 0.096 0.031 0.105 0.134 1.000 1.000 1.000 0.538
BVAR 1.000 1.000 1.000 1.000 0.508 0.186 0.641 1.000
DSGE 0.678 0.185 0.273 0.245 0.250 0.101 0.083 0.144

Av. red. V. all Models
ANN 0.576 0.069 1.000 1.000 1.000 1.000 1.000 1.000
BVAR 0.559 0.724 0.666 0.540 0.231 0.195 0.258 0.033
DSGE 1.000 0.268 0.061 0.019 0.008 0.003 0.014 0.002
GB 0.225 1.000 0.707 0.731 0.363 0.212 0.079 0.000
SPF 0.011 0.353 0.329 0.628 NaN NaN NaN NaN
red. Models
ANN 0.539 0.045 1.000 1.000 1.000 1.000 1.000 1.000
BVAR 0.494 1.000 0.510 0.319 0.177 0.146 0.196 0.023
DSGE 1.000 0.300 0.088 0.016 0.006 0.003 0.011 0.002

GDP all Models
ANN 0.075 0.002 1.000 1.000 1.000 1.000 0.651 0.464
BVAR 0.119 0.344 0.073 0.138 0.119 0.200 0.649 0.754
DSGE 1.000 0.693 0.626 0.529 0.275 0.123 1.000 1.000
GB 0.224 0.534 0.070 0.122 0.053 0.026 0.150 0.000
SPF 0.266 1.000 0.279 0.302 NaN NaN NaN NaN
red. Models
ANN 0.041 0.026 1.000 1.000 1.000 1.000 0.546 0.472
BVAR 0.086 0.325 0.055 0.103 0.096 0.152 0.591 0.760
DSGE 1.000 1.000 0.420 0.300 0.267 0.084 1.000 1.000

Infl all Models
ANN 0.252 0.086 0.069 0.079 0.259 0.177 0.072 0.044
BVAR 0.022 0.001 0.001 0.031 0.119 0.086 0.028 0.014
DSGE 0.325 0.007 0.001 0.021 0.116 0.078 0.031 0.011
GB 0.191 0.013 0.004 0.005 1.000 1.000 1.000 1.000
SPF 1.000 1.000 1.000 1.000 NaN NaN NaN NaN
red. Models
ANN 0.378 1.000 1.000 1.000 1.000 1.000 1.000 1.000
BVAR 0.008 0.367 0.275 0.024 0.157 0.138 0.066 0.045
DSGE 1.000 0.343 0.120 0.432 0.172 0.349 0.154 0.075

FFR all Models
ANN 0.045 0.016 0.041 0.161 0.478 1.000 1.000 1.000
BVAR 1.000 0.193 0.283 0.766 1.000 0.450 0.198 0.035
DSGE 0.000 0.000 0.000 0.000 0.004 0.007 0.016 0.007
GB 0.489 1.000 1.000 1.000 0.422 0.192 0.039 0.000
red. Models
ANN 0.031 0.014 0.034 0.133 0.324 1.000 1.000 1.000
BVAR 1.000 1.000 1.000 1.000 1.000 0.285 0.119 0.025
DSGE 0.000 0.001 0.002 0.003 0.003 0.006 0.009 0.003

Note: This table shows results for the test for superior predictive accuracy by Hansen (2005). Either ANN or ModAv is included in
the set of models. Forecasts for Av. red. V. (GDP, inflation, FFR) are tested; Av. all V. is the test for the average over all 8 variables.
The red. Models setup contains ANN/ModAv, BVAR and DSGE, the all Models specification also contains Greenbook and SPF
forecasts. The model stated per line is treated as the Benchmark, which is tested against the alternatives (red. Models or all Models).
Small p-values mean that one can reject the null hypothesis of SPA; large p-values are in favor of the respective benchmark model.
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Table 11: SPA with ModAv (Section 2)

h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8

Av. all V. red. Models
ModAv 1.000 0.318 1.000 1.000 1.000 1.000 1.000 1.000
BVAR 0.396 1.000 0.213 0.039 0.002 0.001 0.014 0.047
DSGE 0.263 0.322 0.045 0.046 0.036 0.017 0.003 0.000

Av. red. V. all Models
ModAv 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
BVAR 0.053 0.409 0.223 0.211 0.163 0.194 0.263 0.147
DSGE 0.374 0.091 0.000 0.000 0.000 0.000 0.000 0.000
GB 0.060 0.589 0.415 0.478 0.354 0.372 0.292 0.024
SPF 0.001 0.071 0.220 0.458 NaN NaN NaN NaN
red. Models
ModAv 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
BVAR 0.037 0.267 0.138 0.122 0.126 0.144 0.196 0.095
DSGE 0.263 0.060 0.000 0.000 0.000 0.000 0.000 0.000

GDP all Models
ModAv 0.321 0.919 1.000 1.000 1.000 1.000 1.000 1.000
BVAR 0.079 0.174 0.040 0.020 0.058 0.047 0.192 0.005
DSGE 1.000 0.717 0.626 0.280 0.172 0.075 0.433 0.204
GB 0.199 0.545 0.010 0.031 0.006 0.003 0.056 0.000
SPF 0.232 1.000 0.243 0.221 NaN NaN NaN NaN
red. Models
ModAv 0.150 1.000 1.000 1.000 1.000 1.000 1.000 1.000
BVAR 0.052 0.130 0.030 0.019 0.045 0.037 0.166 0.005
DSGE 1.000 0.551 0.435 0.144 0.170 0.047 0.285 0.210

Infl all Models
ModAv 0.495 0.026 0.012 0.069 0.124 0.109 0.027 0.010
BVAR 0.000 0.001 0.001 0.029 0.060 0.066 0.025 0.013
DSGE 0.320 0.008 0.001 0.021 0.000 0.037 0.030 0.012
GB 0.183 0.014 0.004 0.005 1.000 1.000 1.000 1.000
SPF 1.000 1.000 1.000 1.000 NaN NaN NaN NaN
red. Models
ModAv 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
BVAR 0.000 0.009 0.065 0.028 0.036 0.086 0.058 0.065
DSGE 0.311 0.066 0.001 0.205 0.000 0.022 0.023 0.034

FFR red. Models
ModAv 0.056 0.037 0.075 0.142 0.306 0.594 0.772 1.000
BVAR 1.000 0.185 0.413 0.654 1.000 1.000 1.000 0.471
DSGE 0.000 0.000 0.000 0.000 0.001 0.002 0.004 0.003
GB 0.490 1.000 1.000 1.000 0.404 0.275 0.172 0.111
red. Models
NAR 0.028 0.016 0.033 0.063 0.152 0.328 0.480 1.000
BVAR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.368
DSGE 0.001 0.002 0.002 0.002 0.001 0.001 0.001 0.001

Note: This table shows results for the test for superior predictive accuracy by Hansen (2005). Either ANN or ModAv is included in
the set of models. Forecasts for Av. red. V. (GDP, inflation, FFR) are tested; Av. all V. is the test for the average over all 8 variables.
The red. Models setup contains ANN/ModAv, BVAR and DSGE, the all Models specification also contains Greenbook and SPF
forecasts. The model stated per line is treated as the Benchmark, which is tested against the alternatives (red. Models or all Models).
Small p-values mean that one can reject the null hypothesis of SPA; large p-values are in favor of the respective benchmark model.

63



Table 12: SPA with ANN (Section 3)

h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8

Av. all V. red. Models
ANN 0.005 0.002 0.015 0.018 0.300 0.302 0.133 0.114
BVAR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
DSGE 0.053 0.033 0.031 0.025 0.035 0.021 0.017 0.012

Av. red. V. all Models
ANN 0.202 0.020 0.402 0.474 0.469 0.555 0.646 1.000
BVAR 1.000 0.319 0.621 0.578 0.439 0.361 1.000 0.373
DSGE 0.053 0.031 0.018 0.012 0.008 0.010 0.019 0.025
GB 0.614 1.000 1.000 1.000 1.000 1.000 0.599 0.016
SPF 0.004 0.071 0.203 0.274 NaN NaN NaN NaN
red. Models
ANN 0.135 0.008 0.270 0.385 0.521 1.000 0.479 1.000
BVAR 1.000 1.000 1.000 1.000 1.000 0.371 1.000 0.273
DSGE 0.052 0.031 0.021 0.014 0.010 0.012 0.018 0.021

GDP all Models
ANN 0.245 0.021 1.000 1.000 0.544 0.649 0.085 0.111
BVAR 0.506 0.442 0.698 0.722 0.577 1.000 1.000 1.000
DSGE 0.101 0.155 0.176 0.269 1.000 0.482 0.358 0.555
GB 0.806 0.645 0.706 0.247 0.048 0.108 0.028 0.000
SPF 1.000 1.000 0.677 0.393 NaN NaN NaN NaN
red. Models
ANN 0.354 0.018 1.000 1.000 0.493 0.598 0.054 0.108
BVAR 1.000 1.000 0.544 0.577 0.493 1.000 1.000 1.000
DSGE 0.107 0.180 0.139 0.178 1.000 0.399 0.355 0.551

Infl all Models
ANN 0.230 0.021 0.013 0.013 0.014 0.009 0.005 0.005
BVAR 0.333 0.001 0.000 0.000 0.000 0.000 0.000 0.000
DSGE 0.054 0.061 0.055 0.059 0.055 0.065 0.041 0.021
GB 0.522 0.257 0.414 0.463 1.000 1.000 1.000 1.000
SPF 1.000 1.000 1.000 1.000 NaN NaN NaN NaN
red. Models
ANN 0.662 0.594 1.000 1.000 1.000 1.000 1.000 1.000
BVAR 1.000 1.000 0.621 0.524 0.528 0.601 0.496 0.330
DSGE 0.108 0.117 0.111 0.195 0.192 0.264 0.331 0.369

FFR all Models
ANN 0.086 0.058 0.092 0.207 0.522 1.000 1.000 1.000
BVAR 0.757 0.115 0.493 0.721 1.000 0.401 0.225 0.111
DSGE 0.029 0.014 0.002 0.000 0.001 0.002 0.002 0.004
GB 1.000 1.000 1.000 1.000 0.449 0.238 0.071 0.001
red. Models
ANN 0.058 0.040 0.063 0.138 0.373 1.000 1.000 1.000
BVAR 1.000 1.000 1.000 1.000 1.000 0.248 0.141 0.070
DSGE 0.031 0.021 0.005 0.001 0.001 0.002 0.002 0.003

Note: This table shows results for the test for superior predictive accuracy by Hansen (2005). Either ANN or ModAv is included in
the set of models. Forecasts for Av. red. V. (GDP, inflation, FFR) are tested; Av. all V. is the test for the average over all 8 variables.
The red. Models setup contains ANN/ModAv, BVAR and DSGE, the all Models specification also contains Greenbook and SPF
forecasts. The model stated per line is treated as the Benchmark, which is tested against the alternatives (red. Models or all Models).
Small p-values mean that one can reject the null hypothesis of SPA; large p-values are in favor of the respective benchmark model.
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Table 13: SPA with ModAv (Section 3)

h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8

Av. all V. red. Models
ModAv 0.229 0.045 0.156 0.296 1.000 1.000 0.381 0.491
BVAR 1.000 1.000 1.000 1.000 0.365 0.372 1.000 1.000
DSGE 0.033 0.031 0.016 0.004 0.002 0.001 0.001 0.001

Av. red. V. all Models
ModAv 0.179 0.411 0.470 0.753 1.000 0.657 1.000 1.000
BVAR 1.000 0.498 0.602 0.594 0.401 0.370 0.516 0.260
DSGE 0.039 0.026 0.012 0.005 0.004 0.003 0.002 0.003
GB 0.598 1.000 1.000 1.000 0.646 1.000 0.416 0.069
SPF 0.004 0.064 0.197 0.283 NaN NaN NaN NaN
red. Models
ModAv 0.131 0.294 0.394 1.000 1.000 1.000 1.000 1.000
BVAR 1.000 1.000 1.000 0.437 0.309 0.292 0.377 0.158
DSGE 0.039 0.019 0.010 0.005 0.003 0.002 0.002 0.001

GDP all Models
ModAv 0.298 0.795 1.000 1.000 1.000 1.000 0.651 1.000
BVAR 0.468 0.461 0.526 0.208 0.169 0.344 1.000 0.601
DSGE 0.093 0.116 0.102 0.032 0.229 0.091 0.419 0.427
GB 0.779 0.649 0.302 0.012 0.005 0.021 0.018 0.000
SPF 1.000 1.000 0.539 0.133 NaN NaN NaN NaN
red. Models
ModAv 0.437 1.000 1.000 1.000 1.000 1.000 0.649 1.000
BVAR 1.000 0.409 0.382 0.162 0.141 0.269 1.000 0.607
DSGE 0.088 0.100 0.087 0.020 0.225 0.061 0.437 0.426

Infl all Models
ModAv 0.410 0.022 0.014 0.016 0.039 0.013 0.002 0.000
BVAR 0.292 0.001 0.000 0.001 0.000 0.000 0.000 0.000
DSGE 0.051 0.057 0.053 0.052 0.054 0.056 0.038 0.024
GB 0.512 0.252 0.359 0.519 1.000 1.000 1.000 1.000
SPF 1.000 1.000 1.000 1.000 NaN NaN NaN NaN
red. Models
ModAv 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
BVAR 0.383 0.472 0.502 0.353 0.148 0.031 0.004 0.002
DSGE 0.047 0.062 0.058 0.069 0.064 0.130 0.138 0.150

FFR red. Models
ModAv 0.021 0.001 0.013 0.046 0.160 0.392 0.608 1.000
BVAR 0.426 0.124 0.252 0.416 1.000 1.000 1.000 0.597
DSGE 0.029 0.015 0.002 0.000 0.000 0.001 0.001 0.000
GB 1.000 1.000 1.000 1.000 0.449 0.392 0.315 0.163
red. Models
NAR 0.024 0.007 0.005 0.022 0.083 0.227 0.383 1.000
BVAR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.408
DSGE 0.028 0.020 0.007 0.001 0.000 0.001 0.000 0.000

Note: This table shows results for the test for superior predictive accuracy by Hansen (2005). Either ANN or ModAv is included in
the set of models. Forecasts for Av. red. V. (GDP, inflation, FFR) are tested; Av. all V. is the test for the average over all 8 variables.
The red. Models setup contains ANN/ModAv, BVAR and DSGE, the all Models specification also contains Greenbook and SPF
forecasts. The model stated per line is treated as the Benchmark, which is tested against the alternatives (red. Models or all Models).
Small p-values mean that one can reject the null hypothesis of SPA; large p-values are in favor of the respective benchmark model.
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Table 14: SPA with ANN: Crisis Periods

h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8

Av. all V. red. Models
ANN 0.171 0.028 0.090 0.044 1.000 1.000 0.171 0.161
BVAR 1.000 1.000 1.000 1.000 0.326 0.155 1.000 1.000
DSGE 0.043 0.050 0.021 0.013 0.013 0.009 0.014 0.020

Av. red. V. all Models
ANN 0.071 0.007 0.101 0.000 0.071 0.196 0.356 1.000
BVAR 0.026 0.001 0.011 0.083 0.037 0.053 0.360 0.189
DSGE 0.044 0.026 0.004 0.000 0.000 0.001 0.119 0.113
GB 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.361
SPF 0.002 0.033 0.148 0.252 NaN NaN NaN NaN
red. Models
ANN 1.000 0.046 1.000 0.327 1.000 1.000 1.000 1.000
BVAR 0.417 1.000 0.397 1.000 0.336 0.335 0.519 0.149
DSGE 0.053 0.071 0.060 0.026 0.156 0.122 0.219 0.095

Note: This table shows results for the test for superior predictive accuracy by Hansen (2005). Either ANN or ModAv is included in
the set of models. Forecasts for Av. red. V. (GDP, inflation, FFR) are tested; Av. all V. is the test for the average over all 8 variables.
The red. Models setup contains ANN/ModAv, BVAR and DSGE, the all Models specification also contains Greenbook and SPF
forecasts. The model stated per line is treated as the Benchmark, which is tested against the alternatives (red. Models or all Models).
Small p-values mean that one can reject the null hypothesis of SPA; large p-values are in favor of the respective benchmark model.

Table 15: SPA with ModAv: Crisis Periods

h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8

Av. all V. red. Models
ModAv 0.124 0.149 0.415 0.450 1.000 1.000 1.000 1.000
BVAR 1.000 1.000 1.000 1.000 0.093 0.110 0.332 0.342
DSGE 0.039 0.042 0.005 0.002 0.001 0.000 0.001 0.001

Av. red. V. all Models
ModAv 0.068 0.032 0.345 0.158 0.083 0.097 1.000 1.000
BVAR 0.013 0.003 0.013 0.084 0.033 0.041 0.213 0.109
DSGE 0.051 0.022 0.003 0.000 0.000 0.000 0.004 0.016
GB 1.000 1.000 1.000 1.000 1.000 1.000 0.561 0.371
SPF 0.002 0.030 0.147 0.247 NaN NaN NaN NaN
red. Models
ModAv 0.161 1.000 1.000 1.000 1.000 1.000 1.000 1.000
BVAR 1.000 0.332 0.059 0.109 0.053 0.059 0.170 0.072
DSGE 0.048 0.053 0.013 0.000 0.001 0.001 0.003 0.010

Note: This table shows results for the test for superior predictive accuracy by Hansen (2005). Either ANN or ModAv is included in
the set of models. Forecasts for Av. red. V. (GDP, inflation, FFR) are tested; Av. all V. is the test for the average over all 8 variables.
The red. Models setup contains ANN/ModAv, BVAR and DSGE, the all Models specification also contains Greenbook and SPF
forecasts. The model stated per line is treated as the Benchmark, which is tested against the alternatives (red. Models or all Models).
Small p-values mean that one can reject the null hypothesis of SPA; large p-values are in favor of the respective benchmark model.
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