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SOLVING AND ANALYZING DSGE MODELS IN THE FREQUENCY DOMAIN

ALEXANDER MEYER-GOHDE

ABSTRACT. I provide a solution method in the frequency domain for multivariate linear

rational expectations models. The method works with the generalized Schur decomposition,

providing a numerical implementation of the underlying analytic function solution methods

suitable for standard DSGE estimation and analysis procedures. This approach generalizes

the time-domain restriction of autoregressive-moving average exogenous driving forces to

arbitrary covariance stationary processes. Applied to the standard New Keynesian model,

I find that a Bayesian analysis favors a single parameter log harmonic function of the lag

operator over the usual AR(1) assumption as it generates humped shaped autocorrelation

patterns more consistent with the data.

JEL classification codes: C32, C62, C63, E17, E47

Keywords: DSGE; solution methods; spectral methods; Bayesian estimation; general

exogenous processes

1. INTRODUCTION

This article continues the analysis of linear DSGE models in the frequency domain

following Whiteman (1983). In contrast to standard time series methods that characterize

solutions as bounded sequences, this approach seeks solutions as analytic functions on

the unit disk. While the connection between these two via factorization and operator

approaches has been established,1 this connection for multivariate models is incomplete.

Furthermore, the necessity of the frequency domain approach in some cases is not
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appreciated by the literature - such as lag patterns beyond AR and MA representations.

This paper attempts to close these gaps, deriving a frequency domain solution based

on the familiar QZ or generalized Schur decomposition, provides a factorization of the

multivariate lead-lag model and applies the methodology to solve, estimate, and analyze

the canonical New Keynesian model with non ARMA driving forces. I find that a log

harmonic function of the lag operator from the digital signal processing and systems

theory literature is preferred by the data over the standard AR(1) assumption in DSGE

modelling, being able to parsimoniously produce hump shaped dynamics in macroeconomic

variables.

Standard DSGE methods today use state space, time domain methods to solve and

estimate models, see Fernández-Villaverde, Rubio-Ramírez, and Schorfheide (2016), with

the solution usually being obtained via the QZ or generalized Schur decomposition, that

separates the eigenspace into stable and unstable spaces with respect to the unit circle

and constructs the solution using the former.2 For the frequency domain perspective,

Futia (1981) laid the groundwork by highlighting the importance of spectral properties in

assessing the stability of equilibria in stationary linear models. Whiteman (1983) provided

a practical guide to applying these methods across a wider range of models. Hansen and

Sargent (1980, 1981) further integrated spectral analysis into the econometric estimation

and prediction of dynamic models, using the Wiener-Kolmogorov prediction formula and

factorizations. Taylor (1986) synthesized these contributions, connecting them for solving

and analyzing rational expectations and DSGE models. Spectral approaches to solving

DSGE models provides a framework for analyzing the existence, uniqueness, and stability

of equilibria by leveraging the frequency domain to address challenges beyond the reach

of state space methods such as infinite lags and leads and have seen a recent resurgence.3

Al-Sadoon (2020) emphasizes that solutions to DSGE models form a finite-dimensional

affine space in the frequency domain, which allows for precise characterization and

distinction of solutions within this framework. Onatski’s (2006) contribution, through

the introduction of the winding number criterion, further advances this methodology

2Dynare (Adjemian, Bastani, Juillard, Mihoubi, Perendia, Ratto, and Villemot, 2011; Villemot, 2011),

Gensys (Sims, 2001), Uhlig’s Toolkit (Uhlig, 1999) and Solab (Klein, 2000) all follow this approach.
3The frequency domain perspective had not by any means disappeared, remaining a mainstay in imperfect

information approaches such as Kasa’s (2000) application to higher order beliefs, Kasa, Whiteman, and

Walker’s (2011) application to information revealing prices under heterogeneous information, Leeper and

Walker’s (2011) news and Leeper, Yang, and Walker’s (2012) anticipation shocks in DGSE.
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by providing a geometric criterion that links the spectral characteristics of a model to

the existence and uniqueness of its equilibrium. This criterion determines whether a

DSGE model will yield a unique solution, multiple solutions, or no solution, based on

the behavior of its characteristic function in the complex plane, an approach adapted by

Loisel (2022) to analyze solution uniqueness in broad set of models.4 Building on these

foundational ideas, Tan and Walker (2015) and Tan (2021) propose a frequency-domain

framework for solving and estimating DSGE models,5 demonstrating its applicability

across a broad spectrum of economic scenarios, including linear and multivariate models.

Tan and Walker (2015) and Tan (2021) provide the closest references to this paper.

Whiteman (1983) shows how continuing the analytic function on the unit disk that

constitutes the solution to the DSGE model in the frequency domain over singularities

on the disk can pin down missing initial conditions, i.e., determines the value of jump

variables to put the system on the stable arm from a phase diagram perspective. The

presence of the correct number of singularities is analogous to the Blanchard and Kahn

(1980) conditions and is intuitively behind the analyses of Onatski’s (2006) and Loisel

(2022) and this continuation is the annihilation operator or plussing in the prediction

formula of Hansen and Sargent (1980) and Hansen and Sargent (1981). Establishing the

presence of and continuing an analytic function over a singularity is a nontrivial task in a

multivariate setting. Tan and Walker (2015) and Tan (2021) diagonalize the model using

the Smith normal form and then analyze the problem recursively. The Smith normal form,

however, is numerically unstable, analogously to the Jordan normal form being a general

invertible decomposition, see, e.g., Van Dooren (2004), and as such ought to be avoided in

numerical analysis. Tan and Walker (2015) and Tan (2021) circumvent this problem to

some extent by making avail of symbolic implementations of Smith normal form. It is

unclear how scalable this is - particularly for policy institutions working with medium

or large scale DSGE models this is a concern. I show how to triangularize a canonical

DSGE model for finding and continuing the analytic solution functions over singularities
4In a similar vein, Meyer-Gohde and Tzaawa-Krenzler (2024) show that Mankiw and Reis’s (2002) sticky

information Phillips curve is recursive in the frequency domain and leverage this to provide analytic results

on determinacy.
5Sala (2015) estimated DSGE models in the frequency domain. While the solution was obtained using

standard time-domain techniques, the solution was then transformed to the frequency domain to enable

the estimation of the model based on different frequency bands. Dück and Verona (2023) and Martins and

Verona (2023) are two recent examples of analyses that examine frequency consequences, but not frequency

solutions, of macroeconomic models.
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using an orthogonal decomposition, namely the generalized Schur decomposition or QZ

algorithm familiar to DSGE analysis in the time domain. This serves two purposes, firstly,

to address the numerical or scalability obstacles of the Smith normal form approach of

Tan and Walker (2015) and Tan (2021) and to provide researches with more familiar

mathematical tools, the QZ algorithm, in the hopes that this makes the technique more

approachable. Supporting this second purpose, the analysis here links the multivariate

spectral approach to a multivariate factorization in lag and forward operators, the direct

extension of Sargent’s (1987, Ch. XIV) univariate factorizations.

I then demonstrates the practical application of the method by estimating and analyzing

a New Keynesian model, specifically the loglinearized version described in Herbst and

Schorfheide (2015). While traditional models, such as Smets and Wouters (2007), often rely

on AR(1) processes for technology and government expenditures, this research expands

the scope by introducing alternative specifications, including MA(1) and nonlinear (or

rather non polynomial) processes like log and harmonic lag operators. These nonlinear

processes, drawn from the systems and digital signal processing literature, capture

autocorrelation patterns that cannot be analyzed using standard time-domain methods.

Through a Bayesian analysis that compares the four specifications, each constrained to

a single parameter for parsimony, I find that the log harmonic lag specification is most

favored by the data and hence outperforms the standard AR(1) specification. This follows

its ability to produce hump-shaped autocorrelation and impulse responses, a common

characteristic in macroeconomic time series, as highlighted by Cogley and Nason (1995)

and, particularly, by capturing the persistent effects of government expenditure shocks

on output growth. This provides a compelling argument for moving beyond traditional

AR(1) processes in macroeconomic modeling - to capture the more complex autocorrelation

structures that yield a better empirical fit, a frequency domain solution approach as

provided here is essential.

The remainder of the paper is organized as follows. In section 2, I layout the fundamen-

tals of time series in the frequency domain and demonstrate how to solve scalar models,

using Cauchy’s residue theorem to continue the endogenous variable’s rational transfer

function over a singularity on the unit disk caused by its forward looking component. I

then extend this approach to multivariate settings in section 4, connecting to factorization

techniques and then providing a multivariate extension of the residue theorem approach

via the generalized Schur decomposition to triangularize the model. In section 6, I review
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how the impulse responses and second moments can be recovered using inverse Fourier

transforms, the latter enabling likelihood calculations for normally distributed variables.

The techniques are applied to the estimation and analysis of a canonical New Keynesian

model in section 7, estimating the model under four different assumptions on exogenous

driving processes, two of which have non polynomial functions in the lag operator, making

time domain techniques ill suited. Finally, section 8 concludes.

2. TIME SERIES IN THE FREQUENCY DOMAIN

2.1. Recursive Time Domain and Rational Transfer Function. To lay out the analy-

sis, I present an (incomplete) introduction of the relevant frequency domain properties for

the analysis.6 Whiteman (1983) assumes, and we follow, that solutions for yt are sought

in the space spanned by time-independent square-summable linear combinations of the

process(es) fundamental for the driving process, that is H2 or Hardy space.7 Let ϵt be

such a mean zero fundamental process with variance σ2
ϵ . Then an H2 solution for an

endogenous variable, yt, is of the form

yt = y(L)ϵt =
∞∑
j=0

yjϵt− j (1)

with
∑∞

j=0 y2
j <∞ and L the lag operator Lyt = yt−1.8 Following, e.g., Sargent (1987, ch. XI)

the Riesz-Fischer Theorem gives an equivalence (a one-to-one and onto transformation)

between the space of squared summable sequences
∑∞

j=0 y2
j <∞ and the space of analytic

functions in unit disk y(z) corresponding to the z-transform of the sequence, y(z) =∑∞
j=0 yj z j.

Given a discrete series yj its z-transform y(z) is defined as

y(z)=
∞∑
j=0

yj z j (2)

where z is a complex variable, and the sum extends from 0 to infinity, following the

convention used in Hamilton (1994, ch. 6) and Sargent (1987, ch. XI).9 By evaluating

6See the appendix for a more complete representation theorem which we forgo here for expediency.
7See also Han, Tan, and Wu (2022) for a more detailed introduction.
8Note that we are abusing notation somewhat and choosing to use the same letter y to refer to a discrete

time series, yt, as well as that variable’s transform function y(z) or MA representation/response to a

fundamental process j periods ago, yj. This serves to save on the verbosity of notation, which might

otherwise read yt =∑∞
j=0δ

y
j ϵt− j following, e.g., Meyer-Gohde (2010).

9The discrete signal processing and systems theory literature works in negative exponents of z, see

Oppenheim, Schafer, and Buck (1999, ch. 3) and Oppenheim, Willsky, and Nawab (1996, ch. 10). Al-Sadoon
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the z-transform on the unit circle in the complex plane (z = e−iω, where ω is the angular

frequency and i the complex number
p−1), we obtain the discrete-time Fourier transform

y(e−iω)=
∞∑
j=0

yj e−iω j (3)

The connection between the autocovariance function and the Fourier transformation of

the z-transform evaluated on the unit circle (z = e−iω)

Ry(m)= σ2
ϵ

2π

∫ π

−π

∣∣∣y(e−iω)
∣∣∣2 eimωdω (4)

and directly from the Riesz-Fischer theorem’s transform pair,

yj = 1
2π

∫ π

−π
y(e−iω)e jiωdω (5)

These relationships allow us to analyze the temporal dependencies in a time series.

By leveraging the z-transform and Fourier transform, along with the calculations of

autocovariance and impulse responses (or moving average coefficients), we will uncover

the frequency content and temporal dynamics of discrete-time series that are subject to

sticky information.

3. RESIDUES AND SCALAR MODELS

Having laid out the basic properties and paid specific attention to the scaling in the z

domain property, we now turn to solving rational expectations models in the frequency

domain following Whiteman (1983) - see also Taylor (1986, ch. 2.3) for an approachable

introduction with direct comparisons to other methods.

Consider a backward and forward looking model in scalar yt and wt

aE t yt+1 +byt + cyt−1 +wt = 0 (6)

where wt is an exogenous process with an MA(∞) representation wt = w(L )ϵt in the

innovation ϵt with L the lag operator L ϵt = ϵt−1.

Starting with expectations, the Wiener-Kolmogorov prediction formula gives E t [yt+n]=
E t

[∑∞
j=0 yjϵt− j+n

]
= ∑∞

j=0 yj+nϵt− j. The Wiener-Kolmogorov prediction formula of

“plussing” gives the frequency domain version

Z {E t[xt+1]}=
[

x(z)
z

]
+
= 1

z
(x(z)− x(0)) (7)

(2020) follows this convention and interprets the operator being applied as the forward operator. I maintain

the more familiar approach in working with the lag operator which results in the use of positive exponents

in z.



SOLVING AND ANALYZING DSGE MODELS IN THE FREQUENCY DOMAIN 7

where + is the annihilation operator, see Sargent (1987) and Hamilton (1994).

Applying a z-transform to (6), noting (7),

a
1
z

(y(z)− y0)+by(z)+ czy(z)+w(z)= 0 (8)

Rearranging allows me to reduce the solution to this model as

a(y(z)− y0)+bzy(z)+ cz2 y(z)+ z = 0⇔ (a+bz+ z2)y(z)= ay0 − zw(z) (9)

(a−a(λ1 +λ2)z+aλ1λ2z2)y(z)= ay0 − z ⇔ (1−λ1z)(1−λ2z)y(z)= y0 − zw(z)
a

(10)

with the initial condition on y0 to be determined.

I will require that y(z) be analytic inside the unit disk to give us a stable process yt

causal in ϵt. Consider now the following possibilities. If |λ1|, |λ2| < 1, then there is no

singularity in y(z) inside the unit circle that can be removed to pin down y0 and, we find

that (1−λ1L )(1−λ2L )yt =
(
y0 − L w(L )

a

)
ϵt is necessarily unstable as at most one of the

two unstable autoregressive factors (1−λkL ) could be removed by a judicious choice of y0

- that is, we have non existence of a stable solution. If, however, |λ1|, |λ2| > 1, there are two

singularities in y(z) inside the unit circle and y0 cannot be uniquely determined so there

are multiple stable solutions - that is, we have indeterminacy. If however, |λ2| < 1< |λ1|,
there is one singularity in y(z) inside the unit circle, namely at z = 1/λ1, and using the

residue theorem10 it can be removed to ensure the analyticity of y(z) over the unit disk by

setting the boundary condition on y0 as

lim
z→ 1

λ1

(1−λ1z)(1−λ2z)y(z) != 0= y0 −
w(λ−1

1 )
λ1a

⇒ y0 =
w(λ−1

1 )
λ1a

(11)

If wt is white noise, i.e., wt = ϵt and w(z)= 1, then y0 = 1
λ1a and the unique stable solution

for the process on y(z) is

y(z)= 1
1−λ1z

1
1−λ2z

1
a

(
1
λ1

− z
)
= 1

1−λ2z
1
λ1a

= 1
λ1a

1
1−λ2z

(12)

10See Ahlfors (1979, ch. 4). The Cauchy–Goursat theorem tells us the contour integral of an analytic

function is zero for every closed curve in its region of convergence and Cauchy’s residue theorem tells us

the contour integral of function that is analytic except for isolated singularities is equal to the sum of the

residues (multiplied by their winding numbers for higher order, but not essential singularities) at these

singularities for a contour that contains but does not intersect these singularities. Hence, if we can choose

initial conditions, such as y0 for y(z), such that these residues are zero, we then have an analytic function

in the region contained by the contour.
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Substituting the lag operator for z to express in the time domain gives us

yt = 1
λ1a

1
1−λ2L

ϵt ⇒ yt =λ2 yt−1 + 1
λ1a

ϵt (13)

For the general wt = w(L )ϵt case,

y(z)= 1
1−λ1z

1
1−λ2z

1
a

(
w(λ−1

1 )
λ1

− zw(z)

)
= 1

1−λ2z
1
λ1a

zw(z)− 1
λ1

w(λ−1
1 )

z− 1
λ1

(14)

Hansen and Sargent (1980) and Hansen and Sargent (1981) (see also Whiteman and

Lewis (2010) for more details on this and other prediction formulas) give the equivalent

to (7) for the removable singularity at 1/λ1 giving the time domain representation as

yt =λ2 yt−1 + 1
λ1a

E t

[
w(L )

1− 1
Lλ1

ϵt

]
=λ2 yt−1 + 1

λ1a

∞∑
j=0

λ
− j
1 E t

[
wt+ j

]
(15)

Hence the requirement that one root be inside and one outside the unit circle gives

the famed Blanchard and Kahn (1980) condition. Underlining the point that deriving

the condition in either time or frequency domain neither alters the model itself or the

associated conditions for determinacy, but simply allows us to determine unique solutions

and boundary conditions of models with a different tools.

Compare this with the time domain approach. The process

aE t yt+1 +byt + cyt−1 +wt = 0 (16)

can be factored using λ1 and λ2 as

aE t yt+1 −a (λ1 +λ2) yt +aλ1λ2 yt−1 +wt = 0 (17)

a (E t yt+1 −λ2 yt)= aλ1 (yt −λ2 yt−1)−wt (18)

define xt = yt −λ2 yt−1 this is

E txt+1 =λ1xt − 1
a
ϵt ⇒ xt = lim

j→∞
1

λ
j
1

E txt+ j + 1
λ1a

∞∑
j=0

λ
− j
1 E t

[
wt+ j

]
(19)

which follows from solving forward as in Blanchard (1979). Substituting the definition of

xt gives

yt =λ2 yt−1 + 1
λ1a

∞∑
j=0

λ
− j
1 E t

[
wt+ j

]
(20)

or if wt is white noise, i.e., wt = ϵt

yt =λ2 yt−1 + 1
λ1a

ϵt (21)

the same solution from the frequency domain approach above.
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The question is now why bother with the frequency domain approach if it provides

the same solution as the more familiar time domain approach. The answer lies in the

difference in the mapping of exogenous shocks to endogenous variables. Comparing (21)

to (20), the case of a general exogenous process is substantially more complicated than

white noise, as we need to calculate the infinite sum
∑∞

j=0λ
− j
1 E t

[
wt+ j

]
. In a multivariate

case with wt being a VAR(1) process, Klein (2000) shows this can be reduced to solving

a Sylvester equation and, for VARMA(p,q) processes, Meyer-Gohde and Neuhoff (2015)

show this can be reduced to solving a p’th order generalized Sylvester equation and q

and p−1 sequences of linear equations. If wt is not a finite order ARMA process, which

means w(L ) is not a rational function (i.e., cannot be expressed as a(L )w(L ) = b(L )

where a(L ) and b(L ) are finite polynomials in L ) then it is not clear how to calculate

the infinite sum
∑∞

j=0λ
− j
1 E t

[
wt+ j

]
.

This difficulty does not, however, arise in the frequency domain case. The term anal-

ogous to the infinite forward sum in the time domain case is the frequency domain

Wiener-Kolmogorov prediction formula 1
λ1a

zw(z)− 1
λ1

w(λ−1
1 )

z− 1
λ1

. Note that instead of needing

to calculate an infinite sum, we only need to be able to evaluate the function w(z) on

the unit circle. While an ARMA representation for wt would permit a closed form eval-

uation of w(z) (i.e., w(z) = a(z)−1b(z) with a(z) and b(z) known and finite polynomials,

w(z) is called a rational function of z), it is not necessary. In the application section, I

will examine ln(1−αz)w(z) =−z for |α| < 1 from Oppenheim, Schafer, and Buck (1999,

p. 117) and Oppenheim, Willsky, and Nawab (1996, p. 762). To express this in the time

domain, one has to resort to the MA(∞) representation, using ln(1−αL )=−∑∞
j=1

α j

j L j

this gives the AR(∞) representation
∑∞

j=0
α j+1

j+1 L jwt = ϵt. And the z transform and digital

signal processing literature, see again Oppenheim, Schafer, and Buck (1999) or Proakis

and Manolakis (1996), has numerous examples of non rational transfer functions such

as w(z) = exp(αz), w(z) = sin(αz), w(z) = 1/
(
1+αz+β√

1−γz
)

all of which can provide

parsimonious representations of complicated, from an ARMA perspective, autocorrelation

patterns. But these alternatives are all equally easy to deal with as an ARMA process,

we only need to be able to evaluate the function w(z) for various values of z, see (4) and

(5), which allow us to calculate the autocovariances and impulse responses from inverse

Fourier transforms by evaluating w(z) and y(z) at a finite set of points z.
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4. MULTIVARIATE SPECTRAL SOLUTION

4.1. Problem Statement. Consider now the general multivariate problem

AE t[Yt+1]+BYt +CYt−1 +Wt = 0 (22)

where Yt is the ny×1 vector of endogenous and Wt the nw×1 vector of exogenous variables

assumed satisfy

Assumption 4.1. Exogenous Process Wt

The exogenous process can be written

Wt =
∞∑
j=0

Ŵjϵt− j =W(L )ϵt (23)

with
∞∑
j=0

||Ŵj|| <∞, E[ϵt]= 0, E[ϵtϵ
′
t+i]= 0 , ∀i ̸= 0, ||E[ϵtϵ

′
t]|| <∞ (24)

In his original analysis, Whiteman (1983) provided multivariate results, but assumed

nonsingularity of leading coefficient matrix and distinctness of all the eigenvalues, both

of which are untenable in general multivariate DSGE models.11

A solution of the model is a function

Y (z) :C→Cny (25)

that is analytic for |z| < 1 and solves

(A+ zB+ z2C)Y (z)= AY (0)− zW(z) (26)

Equation (26) follows from (22) via the Wiener-Kolmogorov prediction formula of plussing

Z {E t[Yt+1]}= [
Y (z)

z
]+ = 1

z
(Y (z)−Y (0)) (27)

4.2. Solvent Factorization. I will begin by factoring the problem using Lan and Meyer-

Gohde (2012) to connect the frequency domain approach with an operator approach, giving

a multivariate extension of the factorization approach of the previous section from Hansen

and Sargent (1980) and Hansen and Sargent (1981). I begin by formalizing the matrix

quadratic equation; its solution, called a solvent; and the eigenvalues of the solvent, called

latent roots of the associated lambda matrix.12

11Furthermore, both Onatski (2006) and Tan and Walker (2015) identify several inconsistencies in and

correct the multivariate extension.
12See, e.g., Dennis, Jr., Traub, and Weber (1976, p. 835) or Gantmacher (1959, vol. I, p. 228).
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Definition 4.2 (Matrix Quadratic Problem). For A, B, and C ∈Rny×ny , a matrix quadratic

M(X ) :Cny×ny →Cny×ny is defined as

M(X )≡ AX2 +BX +C (28)

Definition 4.3. Solvent of Matrix Quadratic

X ∈Cny×ny is a solvent of the matrix quadratic (28) if and only if M(X )= 0

Definition 4.4. Lambda Matrix

The lambda matrix M(λ) :C→Cn×n (of degree two) associated with (28) is given by

M(λ)≡ Aλ2 +Bλ+C (29)

Its latent roots are (i) values of λ ∈C such that det M(λ)= 0 and (ii) ny−rank
(
f ỹ

)
infinite

roots.

I show that equivalents to Blanchard and Kahn’s (1980) order and rank conditions

are necessary and sufficient for the existence of a unique solution of Yt adapted to the

filtration. The order condition assumes a full set of latent roots with half on or inside and

half outside the unit circle and the rank conditions assumes that a solution, or solvent, of

(28) can be constructed with these stable roots

Assumption 4.5 (Order). There exists 2ny latent roots of Aλ2 +Bλ+C—that is, ny +
rank(A) finite λ ∈ C : det(Aλ2 +Bλ+C) = 0 and ny − rank(A) infinite λ—of which ny lie

inside and ny outside the unit circle.

Assumption 4.6 (Rank). There exists an X ∈ Rny×ny such that AX2 +BX +C = 0 and

|eig(X )| < 1.

Here eig(X ) denotes the set of eigenvalues of X , or spectrum, ρ(PX ), of the pencil

PI,−X (z)≡ Iny×ny z− X as defined in the following

Definition 4.7 (Matrix Pencil, Spectrum, and Regularity). Let PFG(z)≡ Fz−G = 0 :C→
Cn×n be a matrix-valued linear function of a complex variable; a linear matrix pencil. Its

set of generalized eigenvalues or spectrum ρ(P) is defined via ρ(P)= {z ∈C : detP(z)= 0}. I

extend the set to include infinite eigenvalues, the multiplicity of which is given by n less

the rank of A. A pencil is said to be regular if ∃z ∈C : detP(z) ̸= 0.
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Theorem 4.8 (Unique Solution). Assumptions (4.5) and (4.6) are necessary and sufficient

for the existence of a unique solution for Yt to(
A

1
B

+B+CB

)
E t [Yt]+E t [Wt]= 0 (30)

This solution is given by

Yt =− (I − XB)−1
(
A

1
B

+ AX +B
)−1

E t [Wt] (31)

Yt = XYt−1 −
∞∑
j=0

[− (AX +B)−1 A
]− j

(AX +B)−1 E t
[
Wt+ j

]
(32)

where X is the solvent in assumption 4.6 and 1
B

is Sargent’s (1987, Ch. XIV) forward

operator: 1
B

E t [Wt]= E t [Wt+1].13

The factorization in (31) is a multivariate extension for (potentially) singular A of

Sargent’s (1987, Ch. XIV), described further in Taylor (1986) and Whiteman (1983), and

(32) is a multivariate version of the forward solution of Blanchard (1979).

Corollary 4.9. The forward solution in (32) can be written as

Yt = XYt−1 − (AX +B)−1 W̃t (33)

where

W̃t = (AX +B)−1 Wt +
[− (AX +B)−1 A

]= E t
[
W̃t+1

]
(34)

and if Wt is a rational function, Wt = P (L )−1 Q (L )εt, where L is the lag operator L Wt =
Wt−1 and P and Q are finite matrix polynomial functions in L then

W̃t = (AX +B)−1 P (L )−1 Q (L )εt +
[− (AX +B)−1 A

]
E t [wt+1] (35)

Q (B)−1 P (B)
(
(AX +B)+ A

1
B

)
E t

[
W̃t

]= εt (36)

In the frequency domain, this can be written via a Z transform as

Y (z)=− (I − X z)−1
[(

A
1
z
+ AX +B

)−1
W(z)

]
+

(37)

the prediction formula of plussing can be evaluated pointwise using Hansen and Sargent

(1980), Hansen and Sargent (1981), and Whiteman and Lewis (2010) for the scalar ut via

ut = E t

[
ψ(B)

1−λ 1
B

ϵt

]
=

[
ψ(B)

1−λ 1
B

]
+
ϵt = Lψ(L )−λψ(λ)

L −λ ϵt (38)

13All proofs are in the appendix.
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which translates in the frequency domain to

u(z)= zψ(z)−λψ(λ)
z−λ (39)

Hence to take advantage of this result, we need to diagonalize the term in (37) under the

annihilation operator. Accordingly, define

U(z)=
(
A

1
z
+ AX +B

)−1
W(z)⇒

(
I − (AX +B)−1 (−A)

1
z

)
U(z)= (AX +B)−1 W(z) (40)

Diagonalizing (AX +B)−1 (−A)=VΛV−1

(
I −Λ1

z

)
V−1U(z)=V−1 (AX +B)−1 W(z) (41)

and so for Û(z)=V−1U(z) we get(
1−λ j

1
z

)
Û j(z)= [

V−1 (AX +B)−1 W(z)
]

j (42)

for each element j of the vector Û(z) and

[
Û j(z)

]
+ =

[[
V−1 (AX +B)−1 W(z)

]
j

1−λ j
1
z

]
+
=

z
[
V−1 (AX +B)−1 W(z)

]
j −λ j

[
V−1 (AX +B)−1 W(λ j)

]
j

z−λ j

(43)

And hence [U(z)]+ as sought above can be constructed from

[U(z)]+ = [
VÛ(z)

]
+ =V

[
Û(z)

]
+ (44)

The usual restrictions and objections to diagonalizing (AX +B)−1 (−A) = VΛV−1 ap-

ply and one could alternatively apply a generalized Schur decomposition Q̃∗AZ̃ = S̃

Q̃∗ (AX +B) Z̃ = T̃, where Q̃ and Z̃ are unitary, S̃ and T̃ upper triangular, and ∗ indicates

conjugate transposition. Exploiting the upper triangularity, one can begin at the last row

and work recursively through Ũ(z)= Z̃∗U(z). Yet, the most frequent method for recover-

ing the solvent X of the matrix quadratic problem (28) involves applying a generalized

Schur decomposition and I will now show how the necessary calculations above can be

recovered as a by-product.14

14Meyer-Gohde (2023) provides diagnostics for the numerical accuracy of X provided by a generalized

Schur decomposition or other methods.
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4.3. Generalized Schur Decomposition/QZ Triangularization. I will now triangu-

larize the problem using a generalized Schur decomposition and then apply the residue

theorem recursively. Rewriting (26) in first-order form (a companion linearization, see

Higham and Kim (2000))I 0

0 A


︸ ︷︷ ︸

F

−z

 0 I

−C −B


︸ ︷︷ ︸

G

zY (z)

Y (z)


︸ ︷︷ ︸

Ỹ (z)

= AỸ (0)−
0

I

 zW(z) (45)

note that X (z) is analytic for |z| < 1 if and only if X̃ (z) is likewise analytic for |z| < 1.

Assuming away King and Watson’s (1998) “mundane” source of nonuniqueness (ill-

specified model, e.g., the same equation is included twice in a model)

Assumption 4.10. The pencil F − zG is regular

I apply the complex generalized Schur decomposition to the pair (F,G).

Q∗FZ = S , Q∗GZ = T (46)

where Q and Z are unitary, S and T upper triangular, and ∗ indicates conjugate transpo-

sition.

The spectrum of the pencil PDE(z) is a finite set given by

ρ(PFG)=

T j j/S j j, S j j ̸= 0

∞, otherwise
: j = 1, . . . ,2ny

 (47)

where S j j and T j j denote the j’th row and j’th column of S and T respectively. With

the continuation to infinite generalized eigenvalues,the set of generalized eigenvalues or

spectrum has exactly 2ny elements.15

Assume the model has the same number of eigenvalues inside as outside the unit circle,

where eigenvalues on will be included with those in th unit circle. This is Blanchard and

Kahn’s (1980) order condition.

Assumption 4.11. ∃ny eigenvalues inside the open unit circle and ny eigenvalues outside

the open unit circle

15See also Klein (2000, p. 1410), Dennis, Jr., Traub, and Weber (1976, p. 835), or Golub and Van Loan

(1996, p. 377), where the regularity assumption rules out S j j = T j j = 0 for some j.
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Sort the decomposition with the eigenvalues in ascending absolute value and partition

Q, Z,S and T according to the blocks inside and outside the unit circle. Multiplying (45)

with Q∗ and defining zY (z)

Y (z)

=
Z11 Z12

Z21 Z22

S(z)

U(z)

 (48)

yieldsS11 S12

0 S22

− z

T11 T12

0 T22

S(z)

U(z)

=
S11 S12

0 S22

V (0)

U(0)

−Q∗
0

I

 zW(z) (49)

Examining the lower block of the Schur decomposition

(S22 − zT22)U(z)= S22U(0)−W̃(z) (50)

where W̃(z) is the lower ny half of Q∗
[
0 I

]′
zW(z)

W̃(z)=Q∗
2

[
0 I

]′
zW(z) (51)

Assumption 4.12. Let the pencil

S22 − zT22 (52)

be arranged with its M ≤ ny distinct eigenvalues sorted with the “infinite” eigenvalues

last and the remaining eigenvalues arranged in blocks with repeated eigenvalues together

and otherwise sorted in arbitrary order. For each block µm is defined as the reciprocal of

the eigenvalue associated with the block and is the location in the complex plane of the

singularities such that

det(S22 − zT22)= 0, for z =µm, j = 1, ..., M (53)

Hence as the eigenvalues of PS22T22 are all the eigenvalues of PFG outside the unit circle,

the singularities µm, m = 1, ..., M are all inside the unit circle.

4.4. Simple Case: Distinct, Finite Eigenvalues. The model has now been appro-

priately triangularized to be solved by the residue theorem for analytic continuation.

Before I tackle the most general case, I will begin with the simple case of distinct, finite

eigenvalues in PS22T22 .

Assumption 4.13. The ny eigenvalues of PS22T22 are distinct, finite and outside the open

unit circle.
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Examining the structure of the lower block of the Schur decomposition (50) in the

following






︸ ︷︷ ︸
S22

−z




︸ ︷︷ ︸
T22






︸ ︷︷ ︸
U(z)

=




︸ ︷︷ ︸
S22




︸ ︷︷ ︸
U(0)

−




︸ ︷︷ ︸
W̃(z)

(54)

reveals the triangularity that I will exploit to determine the multivariate residual. The

final row is a scalar equation and, given it, the second to last row is as well. Hence,

proceeding at the bottom and working up to the top will enable me to calculate the

residuals individually.

Consider now the j’th row of (50) depicted as follows






︸ ︷︷ ︸
S22

−z




︸ ︷︷ ︸
T22






︸ ︷︷ ︸
U(z)

=




︸ ︷︷ ︸
S22




︸ ︷︷ ︸
U(0)

−




︸ ︷︷ ︸
W̃(z)

(55)

and summarized in

(
s j − zt j

)
u j(z)+ (

S j+− zT j+
)
U j+(z)= s ju j(0)+S j+U j+(0)− w̃ j(z) (56)

where u j(z) is the j’th entry of U(z) and U j+(z) are the j+1’th through ny’th entries, s j

and t j are the j’th diagonal entries of S22 and T22—S22 j j and T22 j j, S j+ and T j+ are

the j’th rows of S22 and T22 beginning at column j+1—S22 j, j+1:ny and T22 j, j+1:ny . The

equation reveals a singularity in u j(z) inside the unit circle at µ j ≡ s j/t j due to
(
s j − zt j

)
.

Furthermore, as the elements of U j+(z) solve analogous equations with singularities not

at µ j, U j+(µ j) is well defined and demanding the residue of
(
s j − zt j

)
u j(z) at µ j be zero
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gives

lim
z→µ j






︸ ︷︷ ︸
s j

−z




︸ ︷︷ ︸
t j






︸ ︷︷ ︸
u j(z)

!= 0 (57)

⇒ 0=




︸ ︷︷ ︸[
s j S j+

]




︸ ︷︷ ︸ u j(0)

U j+(0)



−




︸ ︷︷ ︸
w̃ j(µ j)

−






︸ ︷︷ ︸
S j+

−µ j




︸ ︷︷ ︸
T j+






︸ ︷︷ ︸
U j+(µ j)

(58)

or summarized

lim
z→µ j

(
s j − zt j

)
u j(z) != 0=−(

S j+−µ jT j+
)
U j+(µ j)+ s ju j(0)+S j+U j+(0)− w̃ j(µ j) (59)

which can be solved for u j(0) (note the assumption of finite eigenvalues ensures that s j

is non-zero, this assumption will be relaxed below) taking U j+(0) as having been solved

previously (these are the elements of U(0) after u j(0) and I proceed recursively starting

at the last entry) and U j+(µ j) as recoverable from




︸ ︷︷ ︸
S22 j+1:ny, j+1:ny

−µ j




︸ ︷︷ ︸
T22 j+1:ny, j+1:ny






︸ ︷︷ ︸
U j+(µ j)

=




︸ ︷︷ ︸
S22 j+1:ny, j+1:ny




︸ ︷︷ ︸
U j+(0)

−




︸ ︷︷ ︸
W̃j+(µ j)

(60)

or (
S22 j+1:ny, j+1:ny −µ jT22 j+1:ny, j+1:ny

)
U j+(µ j)= S22 j+1:ny, j+1:nyU j+(0)−W̃j+(µ j) (61)

which can be solved for U j+(µ j) as S22 j+1:ny, j+1:ny −µ jT22 j+1:ny, j+1:ny is non singular as

I assumed distinct eigenvalues and µ j is singularity associated with the j’th diagonal

elements of S22 and T22.

Hence the triangularization of the generalized Schur decomposition will allow me to

apply the residue approach row by row proceeding recursively from the last row to the

first. If there are ny eigenvalues outside the unit circle (singularities of U(z) on the unit

disc), there are as many residue restrictions as initial conditions U(0) (this is Blanchard
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and Kahn’s (1980) order condition) and if Z∗
22 is full rank, U(z) and U(0) can be mapped

into Y (z) and Y (0) uniquely (this is Blanchard and Kahn’s (1980) rank condition), as I

summarize in the following

Theorem 4.14 (Solution of Y (z) with Distinct, Finite Unstable Eigenvalues). Let assump-

tion 4.13 hold and let Z∗
22 be of full rank, then

Y (z)=−(
Z∗

22
)−1 Z∗

21zY (z)+ (
Z∗

22
)−1U(z) ∀z ∈ {z ∈C | |z| ≤ 1, z ̸=µm for m = 1,2, . . . , M}

(62)

where

U(z)= (S22 − zT22)−1 (
S22U(0)−W̃(z)

)
(63)

for a Wt that satisfies (4.1) with W̃t related to Wt as in(51).

The elements of U(0)=
[
ũ1(0) . . . ũny(0)

]′
are given recursively, starting with j = ny,

by

U(z)= (S22 − zT22)−1 (
S22U(0)−W̃(z)

)
(64)

the elements of U(0)=
[
ũ1(0) . . . ũny(0)

]′
are given recursively, starting with j = ny, by

u j(0)= s−1
j

[(
S j+−µ jT j+

)(
S+

j+−µ jT+
j+

)−1 (
S+

j+U j+(0)−W̃j+(µ j)
)
−S j+U j+(0)− w̃ j(µ j)

]
(65)

where W̃j+(µ j)=
[
w̃ j+1(µ j) . . . w̃ny(µ j)

]′
, U j+(0), s j, S j+ and T j+ are as defined following

(56) and S+
j+ and T+

j+ are the remaining lower right elements of S22 and T22 beginning at

row and column j+1—S22 j+1:ny, j+1:ny and T22 j+1:ny, j+1:ny .

Note that the theorem gives the value for Y (z) everywhere on the unit disk except

for at the singularities. This will generally be sufficient as, e.g., the impulse responses

and autocovariances can be determined be evaluating Y (z) along the unit circle.16 The

foregoing also restricted the analysis to the case of finite eigenvalues, ensuring s j is non

zero for all j, and distinct eigenvalues, which allowed the row by row application of the

residue theorem. Consider briefly the consequences of an infinite eigenvalue, which must

be last from the sorting above, the ny’th row of (50) is(
sny − ztny

)
uny(z)= sny uny(0)− w̃ny(z) (66)

16If one actually needs the value of Y (z) at one of the singularities, as might be the case with information

rigidites, see Meyer-Gohde and Tzaawa-Krenzler (2023), the appendix contains the formulas.
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and for µny = 0, it must be the case that sny = 0 - see also (47) - so the foregoing becomes

ztny uny(z)= w̃ny(z)⇔ uny(z)= t−1
ny

w̃ny(z)− w̃ny(0)

z
(67)

as w̃ny(0)= 0. Taking the limit as z → 0 gives

uny(0)= t−1
ny

w̃(1)
ny

(0) (68)

where w̃(1)
ny (0) is the derivative of w̃ny(z) with respect to z evaluated at z = 0. Hence, for

the infinite eigenvalue, the residue theorem is not applied to recover uny(0) as it coincides

with uny(µny), but instead requires differentiation.

Likewise I assumed distinct eigenvalues. Consider briefly the consequences of repeated

eigenvalues and assume for ease of exposition that they are the last two. The ny’th row of

(50) is (
sny − ztny

)
uny(z)= sny uny(0)− w̃ny(z) (69)

and the associated residue is

lim
z→µny

(
sny − ztny

)
uny(z) != 0= sny uny(0)− w̃ny(µny) (70)

so uny(0)= w̃ny(µny)/sny and µny = sny /tny . The ny −1’th row of (50) is(
sny−1 − ztny−1

)
uny−1(z)+ (

sny−1+− zsny−1+
)
uny(z)= sny−1uny−1(0)+ sny−1+uny(0)− w̃ny−1(z)

(71)

and the associated residue is

lim
z→µny−1

(
sny−1 − ztny−1

)
uny−1(z) != 0 (72)

⇒ 0= sny−1uny−1(0)+ sny−1+uny(0)− w̃ny−1(µny−1)− (
sny−1+−µny−1sny−1+

)
uny(µny−1)

(73)

where now two terms from the previous (lower) row, uny(0) and uny(µny−1) are needed to

be able to solve for uny−1(0). Now uny(0) is not an issue as it was solved for in (70). The

term uny(µny−1) can be recovered from

uny(z)= (
sny − ztny

)−1 (
sny uny(0)− w̃ny(z)

)
(74)

for every z ̸= µny . But that is of course the value we need when eigenvalues repeat

µny−1 = µny . In this case, the equation above is undefined uny(z) = 0−10 and L’Hôpital

gives

uny(µny)=
(
µny tny

)−1
(
w̃(1)

ny
(µny)

)
= s−1

ny
w̃(1)

ny
(µny (75)
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which is equal to the term uny(µny−1) sought above when µny−1 = µny . As above with

infinite eigenvalues, the derivative of w̃ny(z) with respect to z is needed.

I now turn to the general case with repeated and infinite eigenvalues where, as is

familiar from say the Jordan decomposition, derivatives will be involved - the mapping

however will only require the explicit differentiation of the exogenous process W̃(z).

4.5. General Case: Potentially Repeated, Potentially Infinite Eigenvalues. Con-

sider now the case of ny eigenvalues outside the unit circle, potentially infinite (or rather

with associated zero values of s j, see above), and potentially repeated so that there are

M ≤ ny distinct eigenvalues. As stated above, let the pencil

S22 − zT22 (76)

be arranged with its M ≤ ny distinct eigenvalues sorted with the “infinite” eigenvalues

last and the remaining eigenvalues arranged in blocks with repeated eigenvalues together

and otherwise sorted in arbitrary order. The algorithm closely resembles Higham’s

(2008, Ch. 9) “Schur–Parlett Algorithm” but extended here to work on a pencil with the

generalized Schur decomposition instead of the matrix function approach based on the

standard Schur decomposition.

Consider block m of dimension km of (50), the potentially repeated or infinite eigenvalue

analogue to (56),

(Sm − zTm)Um(z)+ (Sm+− zTm+)Um+(z)= SmUm(0)+Sm+Um+(0)−W̃m(z) (77)

Note that any singularities at zero, the infinite eigenvalues, must be contained in the last

block M. Hence, for block m < M, the singularity µm satisfies

S̃m −µm
1×1

T̃m = 0
km×km

(78)

where S̃m is the diagonal of Sm and T̃m of Sm. That is, the singularity of this block is

µm and is given by µm = Sm j j/Tm j j for any and all j = 1, . . . ,km. Define Ŝm = Sm − S̃m

and T̂m = Tm − T̃m as the strictly upper triangular matrices that contain the off diagonal

elements of S and T.

︸ ︷︷ ︸
Sm

≡

︸ ︷︷ ︸
S̃m+Ŝm

≡

︸ ︷︷ ︸
S̃m

+

︸ ︷︷ ︸
Ŝm

(79)
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The matrices Ŝm and T̂m are strictly diagonal, containing nonzero elements at most on

the superdiagonal and above. Accordingly, they are nilpontent of degree km. That is,

Ŝkm
m = T̂km

m = 0
km×km

(80)

As is generally the case with functions of matrices, see Higham (2008, ch. 1) and

Gantmacher (1959, ch. 5), we will be evaluating the matrix function U(z) on the spectrum

which requires us to be able to construct the derivatives of U(z) with respect to z to the

order that corresponds to one less than the index of the repeated eigenvalue. See the

conclusion of the previous subsection two repeated roots required the first derivative to

be calculated. Accordingly

Proposition 4.15 (Derivative of block m). The n’th derivative of (77) with respect to z is

(Sm − zTm)U (n)
m (z)−nTmU (n−1)

m (z)+ (Sm+− zTm+)U (n)
m+(z)−nTm+U (n−1)

m+ (z)=−W̃ (n)
m (z)

(81)

As long as z ̸=µm, this gives a recursive expression for U (n)
m (z) given by

Corollary 4.16 (Recursive function and derivative of block m at z ̸=µm). Um(z) at z ̸=µm

is given by

Um(z)= (Sm − zTm)−1 (
SmUm(0)+Sm+Um+(0)−W̃m(z)− (Sm+− zTm+)Um+(z)

)
(82)

and its n’th derivative with respect to z at z ̸=µm

U (n)
m (z)= (Sm − zTm)−1

(
nTmU (n−1)

m (z)+nTm+U (n−1)
m+ (z)−W̃ (n)

m (z)− (Sm+− zTm+)U (n)
m+(z)

)
(83)

Note that corollary 4.16 allows us to determine the value of Um(z), the current block,

and its z derivative at every value of z on the unit disk apart from z = mum, taking Um(0),

the value Um+(0) and the functions from previous (that is, higher) blocks Um+(z) and their

derivatives U (n)
m+(z) as well as of the exogenous process W̃m(z) and its derivatives W̃ (n)

m (z)

as given. Hence, if we proceed recursively through the blocks, we still need to determine

Um(0) and then we can proceed to the next block as the grouping of eigenvalues ensures

that the block m contains all equations associated with singularities equal to µm. 17

17Technically, I also need to provide values for Um(z) and its z derivative at z = mum to be able to

calculate Um(z) for every value on the unit disk. Practically, this isn’t necessary as the calculations will be

done using discrete approximations with inverse Fourier transforms. But, as we’ll see below, Um(0) will

be uncovered by considering Um(z) at z = mum and Um(z) and its z derivative at z = mum will follow as

by-products.
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To approach calculating the (potentially) multivariate block Um(z) at its singularity,

note that decomposing matrices into a diagonal matrix containing the eigenvalues and a

nilpotent matrix containing the remaining elements is a defining feature of the Jordan

decomposition, see Gantmacher (1959, ch. 7) and Horn and Johnson (2013, Ch. 3.2.7), and

for our matrix function approach, of an atomic block following Higham (2008, Ch. 9). This

nilpotency enables me to formulate a finite recursion in the derivatives of a block m at its

singularity µm as follows

Corollary 4.17 (Recursive derivative of block m at z = µm). The n’th derivative of (77)

with respect to z at z =µm, (81) evaluated at z =µm, is

Ũ (0)
m (µm)=

km−1∑
j=1

1
j!
Θ

j
m

[
W̃ ( j)

m (µm)+ (Sm+µmTm+)U ( j)
m+(µm)− jTm+U ( j−1)

m+ (µm)
]

(84)

where Θm ≡ (
Ŝm −µmT̂m

)
T−1

m and Θkm
m is nilpotent with Θkm

m = 0

I am now in a position to set the residue of (77) to zero and recover the vector Um(0),

the initial conditions associated with block m

Proposition 4.18 (Residue of block m). Demanding the residue of (77) be zero requires

Um(0)= S−1
m

[
W̃m(µ)+ (Sm+ −µmTm+)Um+(µm)−Sm+Um+(0)

]+S−1
m Ũm(µm) (85)

and (A-25) or, expressed together,

Um(0)= S−1
m

[
W̃m(µ)+ (Sm+ −µmTm+)Um+(µm)−Sm+Um+(0)

]
(86)

+S−1
m

km−1∑
j=1

1
j!
Θ

j
m

[
W̃ ( j)

m (µm)+ (Sm+µmTm+)U ( j)
m+(µm)− jTm+U ( j−1)

m+ (µm)
]

(87)

As I will explicitly allow for singularities at zero, which will be sorted to the final block,

consider finally this final, M’th block of dimension kM of (50),

(SM − zTM)UM(z)= SMUM(0)−W̃M(z) (88)

if µM ̸= 0 then I can proceed exactly as above, setting the residue at µM to zero. Otherwise,

µM = 0 which implies the diagonal elements of SM are zero and S̃M = 0
kM×kM

. Hence,

ŜM = SM and T̂M = TM − T̃M . Using this, (88) can be expressed as

UM(z)= T−1
M ŜM

UM(z)−UM(0)
z

+T−1
M

W̃M(z)
z

= T−1
M ŜM

UM(z)−UM(0)
z

+T−1
M

W̃M(z)−W̃M(0)
z

(89)
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as W̃M(0). Letting z →µM = 0

UM(0)= T−1
M ŜMU (1)

M (0)+T−1
M W̃ (1)

M (0) (90)

Note that this is implied by corollary 4.17 with µM = 0 and hence

Proposition 4.19 (Block M - Singularity at 0). If µM = 0, then the coefficients UM(0)

satisfy

UM(0)= T−1
M

kM−1∑
j=0

1
( j+1)!

Θ
j
MW̃ ( j+1)

M (0) (91)

where ΘM ≡ ŜMT−1
M

I collect the individual results from above together to provide the following theorem

Theorem 4.20 (Frequency Domain Solution of Y (z) for Multivariate Linear Models). Let

assumption 4.11 hold and let Z∗
22 be of full rank, then

Y (z)=−(
Z∗

22
)−1 Z∗

21zY (z)+ (
Z∗

22
)−1U(z) ∀z ∈ {z ∈C | |z| ≤ 1, z ̸=µm for m = 1,2, . . . , M}

(92)

where

U(z)= (S22 − zT22)−1 (
S22U(0)−W̃(z)

)
(93)

for a Wt that satisfies (4.1) with W̃t related to Wt as in (51).

The pencil S22− zT22 is sorted into M blocks in accordance with assumption 4.12 and

S, T, Q and Z follow from the generalized Schur decomposition (46). The elements of

U(0)=
[
ũ1(0) . . . ũM(0)

]′
are given recursively blockwise, starting with m = M, by

UM(0)= T−1
M

kM−1∑
j=0

1
( j+1)!

Θ
j
MW̃ ( j+1)

M (0) (94)

with ΘM ≡ ŜMT−1
M if µM = 0 and otherwise

Um(0)= S−1
m

[
W̃m(µ)+ (Sm+ −µmTm+)Um+(µm)−Sm+Um+(0)

]
(95)

+S−1
m

km−1∑
j=1

1
j!
Θ

j
m

[
W̃ ( j)

m (µm)+ (Sm+µmTm+)U ( j)
m+(µm)− jTm+U ( j−1)

m+ (µm)
]

(96)

where Θm ≡ (
Ŝm −µmT̂m

)
T−1

m and

Um+(µm)= (
S+

m+−µmT+
m+

)−1 (
S+

m+Um+(0)−W̃m+(µm)
)

(97)
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where W̃m+(µ j)=
[
w̃m+1(µ j) . . . w̃M(µ j)

]′
, Um+(0), Sm, Tm, Sm+ and Tm+ are as defined

following (78) and S+
j+ and T+

j+ are the remaining lower right elements of S22 and T22

beginning after the rows and columns of block m.

The existence and uniqueness properties are summarized in the dimensions of (48) or

rather the inverse mapping Z∗
11 Z∗

12

Z∗
21 Z∗

22

zY (z)

Y (z)

=
S(z)

U(z)

 (98)

examining this at z = 0 gives Z∗
11 Z∗

12

Z∗
21 Z∗

22


 0

ny×1

Y (0)

=
S(0)

U(0)

 (99)

and the last block equation is

Z∗
22

nu×ny

Y (0)=U(0) (100)

Apparently, my ability to recover Y (0) from U(0) hinges on the dimensions and rank of

Z∗
22. This is the equivalent to Blanchard and Kahn’s (1980) order and rank conditions. I

summarize this in the following

Corollary 4.21 (Existence and Uniqueness of the Solution in Theorem 4.20). There exists

a unique, stable solution for Y (z) given a unique stable U(z) if and only if

(1) The dimensions of U(z) and Y (z) coincide (nu = ny) and

(2) the matrix Z∗
22 is of full rank (rank(Z∗

22)= ny = nu)

If nu < ny there are not enough elements in U(0) to determine all the elements of Y (0)

uniquely - an analytic Y (z) on the unit disc is non-unique or indeterminate. If nu > ny

there are more elements in U(0) than can be associated with elements of Y (0) - an analytic

Y (z) on the unit disc does not exist.

5. FACTORIZED SOLUTION REDUX

The problem expressed above in terms of the backshift, B, and forward operator, 1
B

, in

(30), can be factored with a solvent X as(
A

1
B

+ AX +B
)
(I − XB)E t [Yt]=−E t [Wt]= 0 (101)
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Given the QZ decomposition above, see (46), sorted with the eigenvalues in ascending

absolute value and Q, Z,S and T partitioned according to the blocks inside and outside

the unit circle, this can be diagonalized as in the following.

Corollary 5.1 (Diagonalized Factor Solution). Let assumptions (4.5) and (4.6) hold. The

solution to (30) in theorem 4.8

(
A

1
B

+B+CB

)
E t [Yt]+E t [Wt]= 0 (102)

can be expressed in terms of the QZ decomposition above, see (46), sorted with the eigen-

values in ascending absolute value and Q, Z,S and T partitioned according to the blocks

inside and outside the unit circle, following assumption 4.12, as

Yt =−Z11 (S11 −T11B)−1 Z−1
11 R

(
S22

1
B

−T22

)−1
Q∗

22E t [Wt] (103)

where R ≡ Z11Q−1
11 Z22 −Z12Q−1

11 Z12 or, equivalently,

Yt =−(
Z∗

21B+Z∗
22

)−1
(
S22

1
B

−T22

)−1
Q∗

22E t [Wt] (104)

Inspection shows that the final representation corresponds one-to-one via a Z transform

to theorem 4.20, which in its factored form is

Yt =−(
Z∗

22
)−1 Z∗

21Yt−1 −
(
Z∗

22
)−1

(
S22

1
B

−T22

)−1
Q∗

22E t [Wt] (105)

Giving the forward solution

Yt =−(
Z∗

22
)−1 Z∗

21Yt−1 +
(
T22Z∗

22
)−1

∞∑
j=0

[
(T22)−1 S22

]− j Q∗
22E t

[
Wt+ j

]
(106)

or in the z-domain

Y (z)=−(
Z∗

21z+Z∗
22

)−1
[(

S22
1
z
−T22

)−1
Q∗

22W(z)
]
+

(107)

and the recursive triangular resolution described at the end of section 4.2 to enable the

pointwise evaluation of plussing using the prediction formula of Hansen and Sargent

(1980), Hansen and Sargent (1981), and Whiteman and Lewis (2010) is exactly what

section 4.5 provides.
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6. MOMENTS AND IMPULSE RESPONSE ANALYSIS

Having solved for a frequency domain solution Y (z) from the previous section, the next

step is to analyze it. In particular, I will show how to recover the impulse responses of

the model and its autocovariance function. The latter can then be used to evaluate the

likelihood function under Gaussianity.

Given Y (z) we can write the time domain representation vie the inverse z-transform as

Yt =Y (L )ϵt =
∞∑
j=0

Ŷ jϵt− j (108)

the coefficients Ŷ j are the vector MA(∞) coefficients and, hence, contain the impulse

responses: Ŷ jk,l is the response of endogenous variable k - the k’th element of Yt - to a

shock in exogenous variable l - the l’th element of ϵt - j periods ago.

Following, e.g., Sargent (1987, ch. XI) the converse of Riesz-Fischer Theorem gives

an equivalence (a one-to-one and onto transformation) between the space of analytic

functions in unit disk y(z) and the space of squared summable sequences
∑∞

j=0 y2
j <∞,

corresponding to the inverse z-transform of the sequence, y(z)=∑∞
j=0 yj z j. The inversion

formula from section 2 is

Ŷ j = 1
2π

∫
Γ

Y (z)z− jdz = 1
2π

∫ π

−π
Y (e−iω)e jiωdω (109)

Numerically, the coefficients Ŷ j can be recovered via in inverse fast Fourier transforma-

tion.

I review how to evaluating the likelihood by calculating the sequence of autocovari-

ances spectrally, see, e.g., Meyer-Gohde and Neuhoff (2015) for more details. A linear

combination of elements of Yt, e.g., observables, possess the MA(∞) representation

X t = ΥX
ny×nx

, X t =ΥX
(

I
nx×nx

−ΛL
)−1 [

Φ (L)P (L)−1 Q (L)+Θ (L)
]
ϵt (110)

E.g., Sargent (1987) or Uhlig (1999) show the autocovariances of Yt, Γn
.= E

[
YtY ′

t−n
]
, are

Γn =
∫ π

−π
G(ω)eiωndω (111)

the inverse Fourier transformation of the spectral density of Yt, G(ω) given by

G(ω) .= H(−ω)ΣH(ω)′, H(ω)=ΥX
(

I
nx×nx

−Λeiω
)−1 [

Φ
(
eiω

)
P

(
eiω

)−1
Q

(
eiω

)
+Θ

(
eiω

)]
(112)
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T observations of Yt, Y = [Y ′
1Y ′

2 . . .Y ′
T]′, are then normal with block Toeplitz covariance

matrix

Ψ=


Γ0 Γ′1 . . . Γ′T−1

Γ1 Γ0 . . . Γ′T−2
... . . . ...

ΓT−1 . . . Γ0

 (113)

with autocovariances, Γn, from (111), the log-likelihood of parameters ς given the data is

L (ς|Y )=−0.5pTln (2π)−0.5ln (det (Ψ(ϑ)))−0.5Y ′Ψ(ϑ)−1Y (114)

ln (det (Ψ(ϑ))) and Y ′Ψ(ϑ)−1Y can be calculated with (113) following, e.g., the block

Levinson algorithm in Meyer-Gohde (2010).

7. NONRECURSIVE TRANSFER FUNCTIONS IN A NEW KEYNESIAN MODEL

To illustrate the usefulness of the method introduced above, I will estimate and analyze

the basic New Keynesian model laid out in Herbst and Schorfheide (2015). This is a

loglinearized textbook version of the model of nominal rigidities at the cornerstone of many

macroeconomic policy analyses such as Smets and Wouters (2007). In contrast to Herbst

and Schorfheide (2015) who assume AR(1) processes for technology and government

expenditures, I will also examine MA(1) specifications - which can of course easily be

examined with existing methods - and two processes from the control literature that

feature nonlinear functions of the lag operator to capture their autocorrelation - which

cannot be analyzed with time domain methods and whose estimation is beyond the reach

of other existing methods. I limit all four specifications to a single parameter, putting

them on equal footing in terms of parsimony, and find that the specification I term log

harmonic lag is referred by a Bayesian analysis, owing to its hump-shaped autocorrelation

and impulse pattern - a common feature of macroeconomic time series, Cogley and Nason

(1995).

Introducing the model, I start with the New Keynesian Phillips curve that summarizes

the supply side of the economy

π̂t =βEt [π̂t+1]+κ ( ŷt − ĝt) (115)

where π̂t is inflation, ŷt output and ĝt as flex price output - hence ŷt − ĝt is the output

gap. The parameter β is the representative household’s subjective discount factor and

κ= τ 1−ν
νπ2φ

captures the short run tradeoff int he Phillips curve with φ being the measure of
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price rigidity via quadratic adjustment costs, π steady state inflation, 1/ν is the elasticity

of substitution between differentiated goods, and 1/τ is the representative household’s

elasticity of intertemporal substitution. Now turning to the demand side, given by a

dynamic IS equation,

ŷt = Et [ ŷt+1]− 1
τ

(
R̂t −Et [π̂t+1]−Et [ẑt+1]

)+ ĝt −Et [ ĝt+1] (116)

ẑt is fluctuations in aggregate productivity growth and R̂t is the nominal interest rate

controlled by the central bank via the Taylor rule

R̂t = ρRR̂t−1 +
(
1−ρR

)
ψ1π̂t +

(
1−ρR

)
ψ2 ( ŷt − ĝt)+ϵR,t (117)

where ϵR,t is a monetary policy shock, ρR is the degree of interest rate smoothing, ψ1 the

response of monetary policy to inflation and ψ2 to the output gap.

Herbst and Schorfheide (2015), following standard practice, choose AR(1) specifications

for government expenditures

ĝt = ρg ĝt−1 +ϵg,t (118)

and the technology process or aggregate productivity growth fluctuations18

ẑt = ρz ẑt−1 +ϵz,t (119)

The AR(1) assumption is an appealing mechanism for generating persistence in DSGE

models with a long tradition, methodologically Blanchard and Kahn (1980), theoretically

Kydland and Prescott (1982) and empirically Nelson and Plosser (1982). Yet this is

potentially an oversimplification and I will consider four separate specifications for the

exogenous processes ẑt and ĝt. Alongside the original AR(1)

m̂AR
t = 1

1−ρmL
ϵm,t, m ∈ {g, z} (120)

and MA(1) specification

m̂MA
t = (

1+ρmL
)
ϵm,t, m ∈ {g, z} (121)

a log lag operator specification - this is from Oppenheim, Schafer, and Buck (1999, p. 117)

and Oppenheim, Willsky, and Nawab (1996, p. 762), but modified to have a unit coefficient

18Aggregate productivity is ln At = lnγ+ln At−1+ln zt, and ŷt is output relative to this trend in aggregate

productivity.
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on ϵm,t

m̂LL
t =− ln

(
1−ρmL

)
ρmL

ϵm,t, m ∈ {g, z} (122)

and a harmonic lag operator specification, a modification of the log lag transfer function

involving harmonic series - see Spiegel, Lipschutz, and Liu (2009, p. 141) - and to have a

unit coefficient on ϵm,t

m̂LHL
t =− ln

(
1−ρmL

)(
1−ρmL

)
ρmL

ϵm,t, m ∈ {g, z} (123)

The power series representation of the log lag specification - which translates to its

MA(∞) representation - is

m̂LL
t =

∞∑
j=0

ρ
j
m

j
L jϵm,t, m ∈ {g, z} (124)

comparing this to the AR(1)

m̂AR
t =

∞∑
j=0

ρ
j
mL jϵm,t, m ∈ {g, z} (125)

it is clear that the log lag specification has less autocorrelation for a common ρm than an

AR(1) specification and decreases more quickly in the horizon as it divides by the horizon

j. For the harmonic log, this is19

m̂LHL
t =

∞∑
j=0

(
j+1∑
k=1

1
k

)
ρ

j
mL jϵm,t, m ∈ {g, z} (126)

or recognizing the harmonic number H j =∑ j
k=1

1
k

m̂LHL
t =

∞∑
j=0

H j+1ρ
j
mL jϵm,t, m ∈ {g, z} (127)

and now it is apparent that the log harmonic lag specification has more autocorrelation

for a common ρm than an AR(1) specification and decreases less quickly in the horizon as

it multiplies with H j+1 ≤ 1.

The model is estimated on the same US data from the Great Moderation on GDP

growth, inflation, and the Federal Funds rate as in Herbst and Schorfheide (2015), which

are related to the model’s equations via

Y GRt = γ(Q) +100( ŷt − ŷt−1 + ẑt)

INFL t =π(A) +400π̂t

INTt =π(A) + r(A ) +4γ(Q) +400R̂t.

19See the appendix.
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Name Domain Density Para (1) Para (2)

τ R+ Gamma 2.00 0.50

κ [0,1] Uniform 0.00 1.00

ψ1 R+ Gamma 1.50 0.25

ψ2 R+ Gamma 0.50 0.25

r(A) R+ Gamma 0.50 0.50

π(A) R+ Gamma 7.00 2.00

γ(Q) R Normal 0.40 0.20

ρR [0,1) Uniform 0.00 1.00

ρG (−1,1)∗ Uniform 0.00 1.00

ρZ (−1,1)∗ Uniform 0.00 1.00

σR R+ InvGamma 0.40 4.00

σG R+ InvGamma 1.00 4.00

σZ R+ InvGamma 0.50 4.00

TABLE 1. Parameter priors.

For the MA(1) model, ρG and ρZ are improper priors over R.

The parameters γ(Q),π(A), and r(A) are related to the steady states of the model economy

as follows

γ= 1+ γ(Q)

100
, β= 1

1+ r(A)/400
, π= 1+ π(A)

400
.

In the first-order approximation specified here, the parameters ν and φ are not separately

identifiable so κ defined above will be taken as structural. The structural parameters are

hence

θ =
[
τ,κ,ψ1,ψ2,ρR ,ρg,ρz, r(A ),π(A),γ(Q),σR ,σg,σz

]
The priors are contained in table 1. They are common across specifications and identical to

those in Herbst and Schorfheide (2015). For the MA(1) specification, note that invertibility

or fundamentality is not necessary for stationarity and produces the same autocovariance

function. I follow Meyer-Gohde and Neuhoff’s (2018) Bayesian DSGE implementation

of Lippi and Reichlin’s (1994) root flipping for MA polynomials but - as the process is

assumed first order - the standard Random Walk Metropolis Hastings sampling from

the posterior will be sufficient to sample from the fundamental and non-fundamental

representations.
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Parameter AR(1) MA(1) Log Lag Log Harmonic Lag

τ 2.6236 3.1866 2.1936 3.0224

(1.8117 3.5500) (2.2481 4.2721) (1.4622 3.0427) (2.1233 4.0537)

κ 0.7730 0.6296 0.5655 0.8470

(0.5184 0.9771) (0.4576 0.8557) (0.3149 0.8995) (0.6348 0.9877)

ψ1 1.9309 1.4719 1.7373 1.8620

(1.5134 2.3656) (1.1309 1.8549) (1.3687 2.1324) (1.4624 2.2931)

ψ2 0.7329 0.3044 0.7396 0.7526

(0.2655 1.3732) (0.1352 0.5171) (0.2768 1.3503) (0.2798 1.3767)

r(A) 1.4978 1.1917 1.6279 1.5395

(1.0070 2.0678) (0.8557 1.5567) (1.0910 2.2415) (1.0267 2.1455)

π(A) 3.5926 3.1167 3.8864 3.3986

(3.0334 4.2301) (2.8619 3.3721) (3.1369 4.7810) (2.9441 3.8847)

γ(Q) 0.5136 0.5312 0.5213 0.4350

(0.4269 0.5944) (0.5038 0.5586) (0.4901 0.5523) (0.2570 0.5679)

ρr 0.7985 0.6623 0.8132 0.7849

(0.7382 0.8517) (0.5781 0.7356) (0.7455 0.8723) (0.7246 0.8372)

ρg 0.9819 - 0.8246 0.9799 0.9566

(0.9514 0.9988) -(0.9659 -0.6800) (0.9439 0.9988) (0.8859 0.9972)

ρz 0.8543 - 0.1786 0.9840 0.7392

(0.7949 0.9095) -(0.9505 0.8432) (0.9531 0.9992) (0.6810 0.7939)

σr 0.2100 0.2457 0.2055 0.2110

(0.1733 0.2539) (0.1998 0.3007) (0.1686 0.2494) (0.1746 0.2540)

σg 0.6180 1.0549 0.9621 0.5665

(0.5389 0.7089) (0.8983 1.2352) (0.8345 1.1090) (0.4910 0.6515)

σz 0.3046 3.9570 0.7213 0.2736

(0.2224 0.4153) (2.6003 5.8635) (0.5070 1.0179) (0.2058 0.3638)

Marg. Data Density -326.3955 -437.3892 -364.8139 -324.0800

TABLE 2. Posterior mean parameter estimates, 5% and 95% credible set bounds

in parantheses

The posteriors can be found in table 2.20 For the structural or “deep” parameters,

there is a broad consensus across specifications, consistent with their interpretation as

structural and the values reported in Herbst and Schorfheide (2015). The parameters for

20The parameter posterior distributions can be found in hte appendix, likewise recursive averages that

point to convergence of the Markov chains used to generate draws from the posteriors.
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the exogenous processes are not comparable directly, of course, as the specifications are

vastly different. At the bottom of the table, the marginal data density shows that the data

indeed has a preference regarding the different specifications and while the standard

AR(1) specification is certainly preferred over the MA(1) specification, the log harmonic

lag improves on the AR(1) specification by three log points. Hence among the four equally

parsimonious exogenous processes examined here, I have convincing evidence that the

standard AR(1) process is not the most favored by the data. Understanding why will be

addressed in the following impulse and shock decomposition analyses.

Turning to the posterior impulse response analysis and beginning with the response

to a monetary policy shock, figure 1 shows almost perfect agreement among the four

different specifications. The contractionary monetary policy shock leads output to fall

below its natural level and inflation below its steady state level. While on the one hand we

might expect this as the shock is assumed iid and not subject to the different specifications

imposed on the remaining shocks, this provides evidence that the different specifications

on the remaining shocks do not substantially affect the identification of the monetary

policy shock.

Figure 2 depicts the impulse responses to a technology shock. Here we see the effects of

the four different specifications for the exogenous processes very clearly. Beginning in

the lower left with figure 2e, the MA(1) specification, due to the sampling from the root

flipping at the posterior draws of the MA(1) parameter, demonstrates a very wide response

containing even negative on impact, news shock21 like specifications - see Meyer-Gohde

and Neuhoff (2018) for higher order ARMA specifications in an RBC model. Figure 2f

zooms in on the remaining three specifications. The standard AR(1) specification is highly

persistent, a pervasive feature dating back to Kydland and Prescott (1982). Turning to

the new specifications I introduce to the literature, the log lag specification (122) has a

parameter estimate of ρz of 0.9840 at the posterior mode and nonetheless fails to generate

as much persistence as the AR(1) specification. This was to be expected from above and

to generate sufficient volatility in the productivity process, the standard deviation of

21Anticipated productivity movements as drivers of the business cycle have been examined frequently,

with Barsky, Basu, and Lee (2015) and Portier (2015) providing an interim critical assessment. This

paradigm has been extended recently to models of credit frictions, Görtz, Tsoukalas, and Zanetti (2022), and

labor market frictions, Chahrour, Chugh, and Potter (2023), among others. The perspective here is perhaps

closest to Schmitt-Grohé and Uribe (2012) who examine pervasive news shocks and find they contribute

significantly to the business cycle.
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(A) Output Growth (B) Output

(C) Inflation (D) Nominal Interest Rate

(E) Monetary Policy Shock

FIGURE 1. Monetary Policy Shock
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the shock is estimated to be higher than in the AR(1) specification, as is reflected in the

magnitude of the shock on impact. The log harmonic lag specification (122) is estimated to

be highly persistent like the AR(1) specification, but generates a more complex autocorre-

lation pattern than the exponential decay that the AR(1) is limited too. This hump-shaped

pattern, with the largest effect coming not on impact combines the flavor of a non in-

vertible MA(1) representation with the sustained autocorrelation of an AR(1) process. In

terms of the responses of the endogenous variables, the AR(1), log lag, and log harmonic

lag all provide remarkably similar responses, with positive and persistent responses of

output and inflation, consistent with monetary policy’s contractionary response by raising

interest rates. Note the hump-shaped dynamics in inflation for all three of the non MA

specifications, generated by the interplay of the substantial interest rate smoothing at the

persistent shock. While the log lag specification does not predict as much persistence at

lower horizons as do the AR(1) and log harmonic lag ones, it does imply higher persistence

at higher lags with both the nominal interest rate and inflation being noticeably non zero

even ten years after the shock

Figure 3 depicts the impulse responses to a government expenditure shock. Beginning

with the response of government expenditures in figure 3e, the differences between the

four specifications are dramatically apparent. While the MA(1) specification provides

limited persistence, it does contain non-fundamental responses that, while not as dramatic

as for technology, lead to wide posterior cedible sets on the responses. The log lag

specification predicts a faster than exponential decrease in the response initially that

however become very persistent at higher horizons. The AR(1) specification is very highly

autocorrelated but like the log lag specification monotonic in its response. Very different

is the hump shaped pattern produced by the log harmonic lag specification, combining

the news shock later peak response of non fundamental MA processes with the sustained

persistence of an AR process. This pattern is passed to output, while inflation and the

nominal interest rate respond to the output gap yt − gt which remains unchanged in this

simple model. While not as visually striking as the response of output, the response of

output growth is decisive and likely responsible for the higher log posterior data density

of the log harmonic lag specification, as only it predicts a monotone response of output

growth to government expenditures and it is the only response of output growth to any

shock that displays this pattern. This gives output growth the autocorrelation needed

to match the data for the log harmonic lag specification, with variation in this shock
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(A) Output Growth (B) Output

(C) Inflation (D) Nominal Interest Rate

(E) Technology (F) Technology - w/o MA(1)

FIGURE 2. Technology Shock
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responsible for the majority of the variation in output growth according to the variance

decompositions that follow, and is responsible for why all three other specifications fail to

do so.

(A) Output Growth (B) Output

(C) Inflation (D) Nominal Interest Rate

(E) Government Expenditure

FIGURE 3. Government Expenditure Shock
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In figure 4, the posterior autocorrelations of variables along with, when available, the

empirical counterparts are plotted. The absence of sustained autocorrelation under the

MA(1) specification for technology and government expenditures leads to this specification

significantly underestimating the persistence of variables, relative to the data and the

remaining specifications. With respect to inflation and the nominal interest rate, the

three remaining methods perform similarly, with the log lag version suggesting very

significant autocorrelation at high horizons, something not possible with the exponential

decay inherited under the AR(1) specifications. As a consequence of their autocorrelation

patterns for government expenditures and the dominance on this shock on output - see

both the impulses above and the variance decompositions below - the AR(1) and log

harmonic lag both predict highly persistent outputs.

Finally, table 3 contains the variance decomposition of the four endogenous variables

under the four specifications. Starting at the bottom with output growth, the AR(1)

and both log lag specifications roughly agree with government expenditures driving ap-

proximately 85%, technology 10%, and monetary policy 5% of its variation. The MA(1)

specification attributes an approximately 50-50 split between government expenditures

and technology. All specifications are in general agrement that variations in the nom-

inal interest rate and inflation are driven primarily by technology shocks and then by

monetary policy shocks. The MA(1) specification, however, attributes a significantly

higher proportion of the variation in interest rates and a lower proportion in inflation to

monetary policy shocks than the other methods, which would seem consistent with the

reduction in the systematic inflation stabilization in the policy rule, with other sources

apart from monetary policy shocks - deviations from the systemic component - responsible

for move of the movements in inflation. According to both the AR(1) and log harmonic lag

specifications, variations in output are almost entirely driven by government expenditure

shocks this follows not because technology and monetary policy shocks have no effect on

output, but rather because government expenditure shocks have such a disproportionately

large effect, see the impulse responses above.

The frequency domain solution method of the foregoing sections enables the analysis of

exogenous driving forces beyond the standard ARMA types that lead to transfer functions

as ratios of polynomials or rational functions of the lag operator. Specifically I estimated

and analyzed the effects of log lag and log harmonic lag operator transfer functions

in a canonical New Keynesian model and find that the data prefers the log harmonic
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(A) Output Growth (B) Output

(C) Inflation (D) Nominal Interest Rate

(E) Technology (F) Government Expenditure

FIGURE 4. Autocorrelation
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Technology Gov’t Expenditures Monetary Policy

Output

AR(1) 0.0033 0.9949 0.0017

(0.0002 0.0142) (0.9792 0.9998) (0.0001 0.0069)

MA(1) 0.2572 0.7350 0.0079

(0.0036 0.4944) (0.4979 0.9850) (0.0043 0.0155)

Log Lag 0.0573 0.9126 0.0284

(0.0210 0.1449) (0.8033 0.9637) (0.0132 0.0574)

Log Harmonic Lag 0.0011 0.9985 0.0004

(0.0000 0.0086) (0.9884 1.0000) (0.0000 0.0031)

Inflation

AR(1) 0.7274 0.0000 0.2726

(0.6007 0.8373) (0.0000 0.0000) (0.1627 0.3993)

MA(1) 0.8798 0.0000 0.1202

(0.0638 0.9388) (0.0000 0.0000) (0.0612 0.9362)

Log Lag 0.7166 0.0000 0.2834

(0.5775 0.8362) (0.0000 0.0000) (0.1638 0.4225)

Log Harmonic Lag 0.7440 0.0000 0.2560

(0.6345 0.8364) (0.0000 0.0000) (0.1636 0.3655)

Nominal Interest Rate

AR(1) 0.9249 0.0000 0.0751

(0.8628 0.9632) ( 0.0000 0.0000) ( 0.0368 0.1372)

MA(1) 0.7492 0.0000 0.2508

(0.0286 0.8758) ( 0.0000 0.0000) ( 0.1242 0.9714)

Log Lag 0.9227 0.0000 0.0773

(0.8630 0.9565) ( 0.0000 0.0000) ( 0.0435 0.1370)

Log Harmonic Lag 0.9043 0.0000 0.0957

(0.8390 0.9466) ( 0.0000 0.0000) ( 0.0534 0.1610)

Output Growth

AR(1) 0.1064 0.8329 0.0583

(0.0603 0.1872) ( 0.7332 0.8967) ( 0.0345 0.0970)

MA(1) 0.4293 0.5643 0.0066

(0.0076 0.6767) ( 0.3179 0.9795) ( 0.0033 0.0158)

Log Lag 0.0790 0.8848 0.0341

(0.0317 0.1780) ( 0.7689 0.9471) ( 0.0171 0.0646)

Log Harmonic Lag 0.0972 0.8613 0.0397

(0.0591 0.1600) ( 0.7846 0.9113) ( 0.0231 0.0668)

TABLE 3. Posterior variance decompositions, 5% and 95% credible set bounds in

parentheses
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lag specification, particularly because its hump shaped dynamics in the government

expenditure process yields a persistently positive response of output growth to government

expenditure shocks, enabling the model to recreate the sustained positive autocorrelation

in output growth found in the data.

8. CONCLUSION

I have shown that the familiar QZ algorithm of generalized Schur decomposition can

be applied to the solution of multivariate DSGE models in the frequency domain. The

triangularization of the endogenous lead-lag structure allows Cauchy’s residue theorem

to be applied recursively to continue the transfer functions over the singularities on the

unit disk induced by unstable eigenvalues. This recovers the missing initial conditions

or the initial response of forward-looking or jump variables consistent with the model

being on the stable arm of the system. I show how the solution can be assembled into a

multivariate lag operator factorization that connects to univariate representations from

Sargent’s (1987, Ch. XIV) and makes the application of inverse Fourier transforms to

recover impulse responses, autocovariance functions, and consequently the likelihood

function straightforward.

In an application to the canonical New Keynesian model, I compare two transfer func-

tions that non rational functions of the lag operator (specifically involving the logarithm of

the lag operator) to polynomial specifications, i.e., AR and MA processes, for the exogenous

driving forces. I find that the data prefers the log harmonic function of the lag operator

over the standard AR(1) as the former is able to induce hump-shaped dynamics and more

closely match the autocorrelation patterns in the data, especially output growth. While

not preferred by the data, the other non rational transfer function implies autocorrelation

patterns for endogenous variables that do not decay exponentially, instead persisting

consistent with, say, long memory following Granger and Joyeux (1980) and Hassler

(2019).
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APPENDIX A. APPENDIX

FREQUENCY DOMAIN REPRESENTATION OF DISCRETE TIME SERIES

Here I present an (incomplete) introduction, following Priestly (1981), Ahlfors (1979),
Oppenheim, Schafer, and Buck (1999, ch. 3), Oppenheim, Willsky, and Nawab (1996,
ch. 10), Hamilton (1994, ch. 6), Sargent (1987, ch. XI), and Shumway and Stoffer (2011) to
the z-transform and discrete time Fourier transform as it will pertain to our analysis of
the determinacy of linear DSGE models. These transforms discern the frequency content
and temporal dependencies of a given sequence and, hence, can be used in the analysis of
discrete-time series.

My basic assumptions follow, e.g., Priestly (1981, ch. 4.11.) or Shumway and Stoffer
(2011, Appendix C), for mean zero, linearly regular covariance stationary stochastic
processes with absolutely continuous spectral distribution functions. Let yt be such a
process, then

yt =
∫ π

−π
eitωdZ(ω) (A-1)

where dZ(ω) is a mean zero, random orthogonal increment process with E
[|dZ(ω)|2]=

h(ω)dω and E [dZ(ω1)dZ(ω2)∗]= 0, for ω1 ̸=ω2. Assume that the autocovariance function
is absolutely summable

∞∑
m=−∞

∣∣Ry(m)
∣∣<∞ (A-2)

where the autocovariance function of a discrete-time series yt is defined as

Ry(m)=Cov(yt, yt−m)= E(yt −µy)(yt−m −µy) (A-3)

then the spectral distribution function Z(ω) is absolutely continuous such that dZ(ω)=
f y(ω)dω and f y(ω) is the spectral density given by

f y(ω)=
∞∑

m=−∞
Ry(m)e−iωh, −π≤ω≤π (A-4)

Whiteman (1983) assumes, and I follow, that solutions for yt are sought in the space
spanned by time-independent square-summable linear combinations of the process(es)
fundamental for the driving process, that is H2 or Hardy space.22 Let ϵt be such a mean
zero fundamental process with variance σ2

ϵ . Its spectral density is thus

fϵ(ω)=
∞∑

m=−∞
Rϵ(m)e−iωh = 1

2π
σ2
ϵ (A-5)

22See, e.g., Han, Tan, and Wu (2022) for a more formal introduction.
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Then an H2 solution for an endogenous variable, yt, is of the form yt = y(L)ϵt =∑∞
j=0 yjϵt− j

with
∑∞

j=0 y2
j <∞ and L the lag operator Lyt = yt−1.23 Following, e.g., Sargent (1987, ch. XI)

the Riesz-Fischer Theorem gives an equivalence (a one-to-one and onto transformation)
between the space of squared summable sequences

∑∞
j=0 y2

j <∞ and the space of analytic
functions in unit disk y(z) corresponding to the z-transform of the sequence, y(z) =∑∞

j=0 yj z j.
Given a discrete series yj with samples taken at equally spaced intervals, its z-

transform y(z) is defined in (2) as

y(z)=
∞∑
j=0

yj z j (A-6)

where z is a complex variable, and the sum extends from 0 to infinity, following the
convention used in Hamilton (1994, ch. 6) and Sargent (1987, ch. XI).24 By evaluating
the z-transform on the unit circle in the complex plane (z = e−iω, where ω is the angular
frequency and i the complex number

p−1), I obtain the discrete-time Fourier transform
(DTFT). The DTFT y(e−iω) is given by

y(e−iω)=
∞∑
j=0

yj e−iω j (A-7)

The DTFT reveals the spectral characteristics of the sequence in terms of its frequency
components.

The connection between the autocovariance function and the Fourier transformation of
the z-transform evaluated on the unit circle (z = e−iω) can be established by manipulating
the equations

Ry(m)=
∫ π

−π
f y(ω)eimωdω (A-8)

Hence for our mean zero fundamental process ϵt

Rϵ(m)=
∫ π

−π
fϵ(ω)eimωdω=

∫ π

−π
1

2π
σ2
ϵ eimωdω= 1

2π
σ2
ϵ

∫ π

−π
eimωdω=

σ
2
ϵ for m = 0

0 otherwise

(A-9)

Now return to yt = y(L)ϵt = ∑∞
j=0 yjϵt− j and recall yt =

∫ π
−π eitωdZy(ω) and analogously

ϵt =
∫ π
−π eitωdZϵ(ω) so therefore it must hold that∫ π

−π
eitωdZy(ω)=

∫ π

−π
y(eitω)eitωdZϵ(ω)⇒ dZy(ω)= y(eitω)dZϵ(ω) (A-10)

23Note that I am abusing notation somewhat and choosing to use the same letter y to refer to a discrete

time series, yt, as well as that variable’s transform function y(z) or MA representation/response to a

fundamental process j periods ago, yj. This serves to save on the verbosity of notation, which might

otherwise read yt =∑∞
j=0δ

y
j ϵt− j following, e.g., Meyer-Gohde (2010).

24The discrete signal processing and systems theory literature works in negative exponents of z, see

Oppenheim, Schafer, and Buck (1999, ch. 3) and Oppenheim, Willsky, and Nawab (1996, ch. 10). Al-Sadoon

(2020) follows this convention and interprets the operator being applied as the forward operator. I maintain

the more familiar approach in working with the lag operator which results in the use of positive exponents

in z.
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Multiplying both sides by their complex conjugates and taking expectations gives

E
[
dZy(ω)dZy(ω)∗

]= E
[

y(eitω)y(eitω)∗dZϵ(ω)dZϵ(ω)∗
]

(A-11)

f y(ω)=
∣∣∣y(eitω)

∣∣∣2 fϵ(ω)=
∣∣∣y(eitω)

∣∣∣2 1
2π

σ2
ϵ (A-12)

I can insert this directly into (A-8) above to yield (4)

Ry(m)=σ2
ϵ

1
2π

∫ π

−π

∣∣∣y(e−iω)
∣∣∣2 eimωdω (A-13)

where y(e−iω) and y∗(eiω) denote the DTFT of yj and its complex conjugate, respectively.

PROOF OF THEOREM 4.14
Examining the final j+1 : ny block of (50)(

S+
j+− zT+

j+
)
U j+(z)= S+

j+U j+(0)−W̃j+(z) (A-14)

the pencil S+
j+− zT+

j+ has zeros at µ j+1, ...µny but not at µ j by virtue of assumption 4.13.

Hence
(
S+

j+−µ jT+
j+

)
is full rank and

U j+(µ j)=
(
S+

j+−µ jT+
j+

)−1 (
S+

j+U j+(0)−W̃j+(µ j)
)

(A-15)

Turning now to the j’th row of (50)(
s j − zt j

)
u j(z)+ (

S j+− zT j+
)
U j+(z)= s ju j(0)+S j+U j+(0)− w̃ j(z) (A-16)

which has a singularity in ũ j(z) inside the unit circle at µ j ≡ s j/t j due to
(
s j − zt j

)
. Setting

the residue to zero to remove the singularity gives

lim
z→µ j

(
s j − zt j

)
ũ j(z) != 0=−(

S j+−µ jT j+
)
U j+(µ j)+ s ju j(0)+S j+U j+(0)− w̃ j(µ j) (A-17)

Beginning at j = ny and proceeding to j = 1 gives the ny elements of U(0). Multiplying
(48) with Z∗, the conjugate transpose of Z, gives, by virtue of unitary matrices,Z∗

11 Z∗
12

Z∗
21 Z∗

22

zY (z)

Y (z)

=
S(z)

U(z)

 (A-18)

solving the bottom block row for Y (z) completes the proof.

PROOF OF PROPOSITION 4.15
Assume the statement is true for n−1

(Sm − zTm)U (n−1)
m (z)− (n−1)TmU (n−2)

m (z) (A-19)

+ (Sm+− zTm+)U (n−1)
m+ (z)− (n−1)Tm+U (n−2)

m+ (z)=−W̃ (n−1)
m (z) (A-20)

taking the derivative with respect to z yields

(Sm − zTm)U (n)
m (z)−TmU (n−1)

m (z)− (n−1)TmU (n−1)
m (z) (A-21)

+ (Sm+− zTm+)U (n)
m+(z)−Tm+U (n−1)

m+ (z)− (n−1)Tm+U (n−1)
m+ (z)=−W̃ (n)

m (z) (A-22)
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Collecting terms in TmU (n−1)
m (z) and Tm+U (n−1)

m+ (z) delivers (81). Taking the derivative of
(77) with respect to z delivers

(Sm − zTm)U (1)
m (z)−TmUm(z)+ (Sm+− zTm+)Um+(z)−Tm+U (1)

m+(z)=−W̃ (1)
m (z) (A-23)

which is (81) with n = 1.

PROOF OF COROLLARY 4.16
Examine (77) and (81) and recall from (78) that Sm − zTm is singular only for z =µm,

solving for U (n)
m (z) gives the results

PROOF OF COROLLARY 4.17
The n’th derivative of (77) with respect to z at z =µm, (81) evaluated at z =µm, is(

Ŝm −µmT̂m
)
U (n)

m (µm)−nTmU (n−1)
m (µm)+ (

Sm+−µmTm+
)
U (n)

m+(µm)−nTm+U (n−1)
m+ (µm)=−W̃ (n)

m (µm)

(A-24)

advancing the index from n to n+1 and solving for Ũ (n)
m (µm)≡ (Ŝm−µmT̂m)U (n)

m (µm) gives

Ũ (n)
m (µm)= 1

n+1
Θm

[
W̃ (n+1)

m (µm)+ (Sm+ −µmTm+)U (n+1)
m+ (µm)− (n+1)Tm+U (n)

m+(µm)
]

(A-25)

+ 1
n+1

ΘmŨ (n+1)
n (µm) (A-26)

where Θm ≡ (
Ŝm −µmT̂m

)
T−1

m and hence, solving forward gives

Ũ (0)
m (µm)=

km−1∑
j=1

1
j!
Θ

j
m

[
W̃ ( j)

m (µm)+ (Sm+µmTm+)U ( j)
m+(µm)− jTm+U ( j−1)

m+ (µm)
]

(A-27)

as Θkm
m is nilpotent with Θkm

m = 0

PROOF OF PROPOSITION 4.18
Begin with (77)

(Sm − zTm)Um(z)+ (Sm+− zTm+)Um+(z)= SmUm(0)+Sm+Um+(0)−W̃m(z) (A-28)

and rewrite using Ŝm = Sm − S̃m and T̂m = Tm − T̃m(
S̃m − zT̃m

)
Um(z)= SmUm(0)+Sm+Um+(0)−W̃m(z)− (Sm+− zTm+)Um+(z)− (

Ŝm − zT̂m
)
Um(z)

(A-29)

Demanding the residual be equal to zero gives

lim
z→µ j

(
S̃m − zT̃m

)
Um(z) != 0= SmUm(0)+Sm+Um+(0)−W̃m(z)− (Sm+− zTm+)Um+(z)− (

Ŝm − zT̂m
)
Um(z)

(A-30)
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solving for Um(0), note that Sm is upper triangular with nonzero diagonal elements and
hence nonsingular for all m except the “infinite” eigenvalue case considered seperately,
gives

Um(0)= S−1
m

[
(Sm+ −µmTm+)Um+(µm)−Sm+Um+(0)+W̃m(µ)

]+S−1
m

[
(Ŝm −µmT̂m)Um(µm)

]
(A-31)

recalling the definition of Ũ (n)
m (µm) ≡ (Ŝm −µmT̂m)U (n)

m (µm) from above gives the first
equation in the proposition. Inserting (A-25) then the second.

PROOF OF PROPOSITION 4.19
From (77), noting that block M is by definition the final block

(SM − zTM)UM(z)= SMUM(0)−W̃M(z) (A-32)

which can be rearranged as

zTM)UM(z)= SM (UM(z)−UM(0))+W̃M(z)−W̃M(0) (A-33)

as W̃M(0)= 0. Developing further gives

UM(z)= T−1
M ŜM

UM(z)−UM(0)
z

+T−1
M

W̃M(z)−W̃M(0)
z

(A-34)

noting that if µM = 0, the diagonal elements of SM are zero and hence, ŜM = SM . To
determine UM(0), take the limit as z goes to µM = 0

UM(0)= T−1
M ŜM lim

z→0

UM(z)−UM(0)
z

+T−1
M lim

z→0

W̃M(z)−W̃M(0)
z

= T−1
M ŜMU (1)

M (0)+T−1
M W̃ (1)

M (0)

(A-35)

From corollary 4.17, noting that block M is by definition the final block and µM = 0, it
follows that ΘM ≡ ŜMT−1

M and hence

Ũ (1)
M (0)=

kM−1∑
j=1

1
( j+1)!

Θ
j+1
M

[
W̃ ( j+1)

M (0)
]

(A-36)

with Ũ (n)
M (µm)≡ ŜmU (n)

m (0).
Combining yields

UM(0)= T−1
M W̃ (1)

M (0)+T−1
M

kM−1∑
j=1

1
( j+1)!

Θ
j+1
M

[
W̃ ( j+1)

M (0)
]

(A-37)

or

UM(0)= T−1
M

kM−1∑
j=0

1
( j+1)!

Θ
j+1
M

[
W̃ ( j+1)

M (0)
]

(A-38)

PROOF OF THEOREM 4.20
This follows directly from propositions 4.18 and 4.19.
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PROOF OF COROLLARY 5.1
To prove the equivalence stated in the corollary, I first have to lay out some properties

of unitary matrices, how they apply in the context of the QZ decomposition here, (46),
and what restrictions are imposed by the decomposition via the partition of the blocks of
Q, Z,S and T associated with the eigenvalues inside and outside the unit circle.

Proposition A.1. For a unitary matrix Z =
Z11 Z12

Z21 Z22

 and its conjugate transpose

Z∗ =
Z∗

11 Z∗
12

Z∗
21 Z∗

22

 if Z11 is nonsingular, then so are Z∗
11, Z22, and Z∗

22. Furthermore,

Z∗
11 =

(
Z11 +Z12Z−1

22 Z21
)−1 and Z∗

22 =
(
Z2 +Z21Z−1

11 Z12
)−1.

Proof. This follows from the nonsingularity of unitary matrices, the principle pivot (Schur
complement), and the equality of the conjugate transpose and inverse of a unitary matrix.

□
Using 45 and 49

GZ =QS, HZ =QT (A-39)

can be written as I 0

0 A

Z11 Z12

Z21 Z22

=
Q11 Q12

Q21 Q22

S11 S12

0 S22

 (A-40)

 0 I

−C −B

Z11 Z12

Z21 Z22

=
Q11 Q12

Q21 Q22

T11 T12

0 T22

 (A-41)

which delivers the following eight equalities Z11 Z12

AZ21 AZ22

=
Q11S11 Q11S12 +Q12S22

Q21S11 Q21S12 +Q22S22

 (A-42)

 Z21 Z22

−CZ11 −BZ21 −CZ12 −BZ22

=
Q11T11 Q11T12 +Q12T22

Q21T11 Q21T12 +Q22T22

 (A-43)

Using these relations and the assumptions (4.5) and (4.6)
Proposition A.2. If Z11 is nonsingular, then Q11 is nonsingular.

Proof. The upper-left block equation for S in is Q11S11 = Z11. As the upper-triangular
pencil P(S11,T11) has a full set of eigenvalues all of which are inside the unit circle,
S11 is upper triangular with necessarily non-zero diagonal entries and therefore non-
singular. □

From proposition A.1, all the results there apply to Q as well with the nonsingularity
of Q11 from the foregoing. I know have the results to triangularize the solution to (30) in
theorem 4.8 (

A
1
B

+ AX +B
)
(I − XB)E t [Yt]= E t [Wt] (A-44)

Proposition A.3. The following holds
(1) X =−Z∗

22
−1Z∗

21 = Z21Z11
−1 =Q11S11

−1T11Q11
−1

(2) A =Q∗
22

−1S22Z∗
22
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(3) AX +B =−Q∗
22

−1T22Z∗
22

Proof. Beginning with the first claim X = −Z∗
22

−1Z∗
21 = Z21Z11

−1 = Q11S11
−1T11Q11

−1.
The solvent X for a given sorting of the generalized Schur deomposition associated with
the companion linearization (45) is Z21Z11

−1. For the first equality −Z∗
22

−1Z∗
21 = Z21Z11

−1

the results follow from Schur complements and proposition A.1

Z21Z11
−1 = Z21

(
Z∗

11 −Z∗
12Z∗

22
−1Z∗

21

)
(A-45)

= Z21
(
Z∗

11 +Z11
−1Z12Z∗

21
)

(A-46)

= Z21Z∗
11 +Z21Z11

−1Z12Z∗
21 (A-47)

=−Z22Z∗
21 +Z21Z11

−1Z12Z∗
21 (A-48)

=−(
Z22 −Z21Z11

−1Z12
)
Z∗

21 (A-49)

=−Z∗
22

−1Z∗
21 (A-50)

and the second equality Z21Z11
−1 =Q11S11

−1T11Q11
−1 follows from (A-42)

Z21Z11
−1 =Q11S11

−1Z11
−1 (A-51)

Z21Z11
−1 =Q11S11

−1 (
Q11T11

−1)−1
(A-52)

Z21Z11
−1 =Q11S11

−1T11Q11
−1 (A-53)

Now for the second claim A =Q∗
22

−1S22Z∗
22

AZ∗
22

−1 = A
(
Z22 −Z21Z11

−1Z12
)

(A-54)

=Q21S12 +Q22S22 − AZ21Z11
−1Z12 (A-55)

=Q21S12 +Q22S22 −Q21S11Z11
−1Z12 (A-56)

=Q21
(
S12 −S11S11

−1Q11
−1Z12

)+Q22S22 (A-57)

=Q21Q11
−1 (Q11S12 −Z12)+Q22S22 (A-58)

=−Q21Q11
−1Q12S22 +Q22S22 (A-59)

= (
Q22 −Q21Q11

−1Q12
)
S22 (A-60)

=Q∗
22

−1S22 (A-61)

(A-62)

So AZ∗
22

−1 =Q∗
22

−1S22 and hence A =Q∗
22

−1S22Z∗
22.

And, finally, AX +B =−Q∗
22

−1T22Z∗
22

(AX +B) Z∗
22

−1 = AX Z∗
22

−1 +BZ∗
22

−1 (A-63)

= AZ21Z11
−1Z∗

22
−1 +BZ∗

22
−1 (A-64)
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= AZ21Z11
−1Z∗

22
−1 +B

(
Z22 −Z21Z11

−1Z12
)

(A-65)

= AZ21Z11
−1Z∗

22
−1 −CZ12 −Q21T12 −Q22T22 +CZ11Z11

−1Z12 +Q21T11Z11
−1Z12

(A-66)

= AZ21Z11
−1Z∗

22
−1 −Q21T12 −Q22T22 +Q21T11Z11

−1Z12 (A-67)

= AZ21Z11
−1Z∗

22
−1 +Q21

(
T11Z11

−1Z12 −T12
)−Q22T22 (A-68)

=Q21S11Z11
−1Z∗

22
−1 +Q21

(
T11Z11

−1Z12 −T12
)−Q22T22 (A-69)

=Q21

(
S11Z11

−1Z∗
22

−1 +T11Z11
−1Z12 −T12

)
−Q22T22 (A-70)

=Q21Q11
−1

(
Q11S11Z11

−1Z∗
22

−1 +Q11T11Z11
−1Z12 −Q11T12

)
−Q22T22

(A-71)

=Q21Q11
−1

(
Z∗

22
−1 +Q11T11Z11

−1Z12 −Q11T12

)
−Q22T22 (A-72)

=Q21Q11
−1 (

Z22 −Z21Z11
−1Z12 +Q11T11Z11

−1Z12 −Q11T12
)−Q22T22

(A-73)

=Q21Q11
−1 (

Z22 −Z21Z11
−1Z12 +Z21Z11

−1Z12 −Q11T12
)−Q22T22 (A-74)

=Q21Q11
−1 (Z22 −Q11T12)−Q22T22 (A-75)

=Q21Q11
−1Q12T22 −Q22T22 (A-76)

= (
Q21Q11

−1Q12 −Q22
)
T22 (A-77)

=Q∗
22

−1T22 (A-78)

(A-79)

So (AX +B) Z∗
22

−1 =Q∗
22

−1T22 and hence AX +B =−Q∗
22

−1T22Z∗
22. □

Hence, (31) (
A

1
B

+ AX +B
)
(I − XB)Yt =−E t [Wt] (A-80)

can be expressed as(
Q∗

22
−1S22Z∗

22
1
B

−Q∗
22

−1T22Z∗
22

)(
I −Z21Z11

−1B
)
Yt =−E t [Wt] (A-81)

Q∗
22

−1
(
S22Z∗

22
1
B

−T22Z∗
22

)
(Z11 −Z21B) Z11

−1Yt =−E t [Wt] (A-82)

Q∗
22

−1
(
S22

1
B

−T22

)
Z∗

22 (Q11S11 −Q11T11B) Z11
−1Yt =−E t [Wt] (A-83)

Q∗
22

−1
(
S22

1
B

−T22

)
Z∗

22Q11 (S11 −T11B) Z11
−1Yt =−E t [Wt] (A-84)
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(A-85)

While the stable and unstable pencils are now visible in their triangular forms, S11−T11B

and S22
1
B

− T22 it is unclear whether the transformation is similar (i.e., eigenvalue
preserving). To this end, I would need to be able to express Z∗

22Q11 as RZ11 for some
invertible R to have a similar transformation of the stable pencil.

To this end(
Z∗

22Q11
)−1 =Q−1

11 Z∗
22

−1 =Q−1
11

(
Z22 −Z21Z11

−1Z12
)

(A-86)

=Q−1
11 Z22 −Q−1

11 Z21Z11
−1Z12 (A-87)

=Q−1
11 Z22 −Q−1

11 X Z12 (A-88)

=Q−1
11 Z22 −Q−1

11 Q11S11
−1T11Q11

−1Z12 (A-89)

=Q−1
11 Z22 −S11

−1T11Q11
−1Z12 (A-90)

= S11
−1 (

S11Q−1
11 Z22 −T11Q11

−1Z12
)

(A-91)

= S11
−1Q−1

11
(
Q11S11Q−1

11 Z22 −Q11T11Q11
−1Z12

)
(A-92)

= (Q11S11)−1 (
Q11S11Q−1

11 Z22 −Q11T11Q11
−1Z12

)
(A-93)

= Z−1
11

Z11Q−1
11 Z22 −Z21Q11

−1Z12︸ ︷︷ ︸
R

 (A-94)

And so Z∗
22Q11 = RZ11.

Hence proving the claims behind equations (105) (105) in the corollary.
All that remains to prove is the one-to-one equivalence via a Z transform to theorem

4.20. This follows by inspection if it can be shown that
(1) R−1Z11S11Z11

−1 = Z∗
22

(2) −R−1Z11T11Z11
−1 = Z∗

21

Beginning with the first equality R−1Z11S11Z11
−1 = Z∗

22

Z11S11
−1Z11

−1R = Z11S11
−1Z11

−1 (
Z11Q−1

11 Z22 −Z21Q11
−1Z12

)
(A-95)

= Z11S11
−1 (

Q−1
11 Z22 −Z11

−1Z21Q11
−1Z12

)
(A-96)

=Q11S11S11
−1 (

Q−1
11 Z22 −Z11

−1Z21Q11
−1Z12

)
(A-97)

=Q11
(
Q−1

11 Z22 −Z11
−1Z21Q11

−1Z12
)

(A-98)

= Z22 −Q11Z11
−1Z21Q11

−1Z12 (A-99)

= Z22 −Q11Z11
−1Q11T11Q11

−1Z12 (A-100)

= Z22 −Q11S11
−1T11Q11

−1Z12 (A-101)

= Z22 −Z21Z11
−1Z12 (A-102)

= Z∗
22

−1 (A-103)
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and hence R−1Z11S11Z11
−1 = Z∗

22
And now −R−1Z11T11Z11

−1 = Z∗
21

−R−1Z11T11Z11
−1 ?=Z∗

21 (A-104)

R−1Z11T11Z11
−1 ?=Z∗

22Z21Z11
−1 (A-105)

R−1Z11T11
?=Z∗

22Z21 (A-106)

R−1Z11Q11
−1Z21

?=Z∗
22Z21 (A-107)(

R−1Z11Q11
−1 −Z∗

22
)
Z21

?=0 (A-108)

Note that Q11Z11
−1R = Q11Z11

−1 (
Z11Q−1

11 Z22 −Z21Q11
−1Z12

) = Z22 −
Q11Z11

−1Z21Q11
−1Z12 which is Z∗

22
−1 from the previous equality above. Hence(

R−1Z11Q11
−1 −Z∗

22
)
Z21

?=0 (A-109)(
Z∗

22 −Z∗
22

)
Z21

?=0 (A-110)

which holds and thus −R−1Z11T11Z11
−1 = Z∗

21. Hence proving the one-to-one equivalence
to theorem 4.20 and completing the proof.

POSTERIOR DENSITIES

FIGURE 5. Posterior Density AR(1)
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FIGURE 6. Posterior recursive Averages AR(1)

FIGURE 7. Posterior Density MA(1)
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FIGURE 8. Posterior recursive Averages MA(1)

FIGURE 9. Posterior Density Log Lag
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FIGURE 10. Posterior recursive Averages Log Lag

FIGURE 11. Posterior Density Log Harmonic Lag
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FIGURE 12. Posterior recursive Averages Log Harmonic Lag



 
IMFS WORKING PAPER SERIES 

 
Recent Issues 

 
 

206 / 2024 Jochen Güntner 
Magnus Reif 
Maik Wolters 
 

Sudden Stop: Supply and Demand 
Shocks in the German Natural Gas 
Market 

205 / 2024 Alina Tänzer Multivariate Macroeconomic Forecasting: 
From DSGE and BVAR to Artificial Neural 
Networks 
 

204 / 2024 Alina Tänzer The Effectiveness of Central Bank 
Purchases of long-term Treasury 
Securities:A Neural Network Approach 
 

203 / 2024 Gerhard Rösl A present value concept for measuring 
welfare 

202 / 2024 Reimund Mink 
Karl-Heinz Tödter 
 

Staatsverschuldung und Schuldenbremse 

201 / 2024 Balint Tatar 
Volker Wieland 
 

Taylor Rules and the Inflation Surge: The 
Case of the Fed 

200 / 2024 Athanasios Orphanides Enhancing resilience with natural growth 
targeting 
 

199 / 2024 Thomas Jost 
Reimund Mink 
 

Central Bank Losses and Commercial 
Bank Profits – Unexpected and Unfair? 

198 / 2024 Lion Fischer 
Marc Steffen Rapp 
Johannes Zahner 
 

Central banks sowing the seeds for a 
green financial sector? NGFS 
membership and market reactions 

197 / 2023 Tiziana Assenza 
Alberto Cardaci 
Michael Haliassos 
 

Consumption and Account Balances in 
Crises: Have We Neglected Cognitive 
Load? 

196 / 2023 Tobias Berg 
Rainer Haselmann 
Thomas Kick 
Sebastian Schreiber 
 

Unintended Consequences of QE: Real 
Estate Prices and Financial Stability 

195 / 2023 Johannes Huber 
Alexander Meyer-Gohde 
Johanna Saecker 
 

Solving Linear DSGE Models With 
Structure Preserving Doubling Methods 

194 / 2023 Martin Baumgärtner 
Johannes Zahner 
 

Whatever it takes to understand a central 
banker – Embedding their words using 
neural networks 
 

193 / 2023 Alexander Meyer-Gohde Numerical Stability Analysis of Linear 
DSGE Models – Backward Errors, 
Forward Errors and Condition Numbers 



192 / 2023 Otmar Issing 
 

On the importance of Central Bank 
Watchers 
 

191 / 2023 Anh H. Le Climate Change and Carbon Policy: A 
Story of Optimal Green Macroprudential 
and Capital Flow Management 
 

190 / 2023 Athanasios Orphanides The Forward Guidance Trap 
 

189 / 2023 Alexander Meyer-Gohde 
Mary Tzaawa-Krenzler 
 

Sticky information and the Taylor principle 

188 / 2023 Daniel Stempel 
Johannes Zahner 
 

Whose Inflation Rates Matter Most? A 
DSGE Model and Machine Learning 
Approach to Monetary Policy in the Euro 
Area 
 

187 / 2023 Alexander Dück 
Anh H. Le 
 

Transition Risk Uncertainty and Robust 
Optimal Monetary Policy 

186 / 2023 Gerhard Rösl 
Franz Seitz 
 

Uncertainty, Politics, and Crises: The 
Case for Cash 
 

185 / 2023 Andrea Gubitz 
Karl-Heinz Tödter 
Gerhard Ziebarth 
 

Zum Problem inflationsbedingter 
Liquiditätsrestriktionen bei der 
Immobilienfinanzierung 

184 / 2023 Moritz Grebe 
Sinem Kandemir 
Peter Tillmann 

Uncertainty about the War in Ukraine: 
Measurement and Effects on the German 
Business Cycle 
 

183 / 2023 Balint Tatar 
 

Has the Reaction Function of the 
European Central Bank Changed Over 
Time? 
 

182 / 2023 Alexander Meyer-Gohde Solving Linear DSGE Models with 
Bernoulli Iterations 
 

181 / 2023 Brian Fabo 
Martina Jančoková 
Elisabeth Kempf 
Luboš Pástor 
 

Fifty Shades of QE: Robust Evidence 

180 / 2023 Alexander Dück 
Fabio Verona 
 

Monetary policy rules: model uncertainty 
meets design limits 

179 / 2023 Josefine Quast 
Maik Wolters 
 

The Federal Reserve’s Output Gap: The 
Unreliability of Real-Time Reliability Tests 

178 / 2023 David Finck 
Peter Tillmann 
 

The Macroeconomic Effects of Global 
Supply Chain Disruptions 

177 / 2022 Gregor Boehl Ensemble MCMC Sampling for Robust 
Bayesian Inference 
 

 


	Vorlage_Deckblatt_WP_207
	spectral_solution (002)
	1. Introduction
	2. Time Series in the Frequency Domain
	2.1. Recursive Time Domain and Rational Transfer Function

	3. Residues and Scalar Models
	4. Multivariate Spectral Solution
	4.1. Problem Statement
	4.2. Solvent Factorization
	4.3. Generalized Schur Decomposition/QZ Triangularization
	4.4. Simple Case: Distinct, Finite Eigenvalues
	4.5. General Case: Potentially Repeated, Potentially Infinite Eigenvalues

	5. Factorized Solution Redux
	6. Moments and Impulse Response Analysis
	7. Nonrecursive Transfer Functions in a New Keynesian model
	8. Conclusion
	References
	Appendix A. Appendix
	Frequency Domain Representation of Discrete Time Series
	Proof of Theorem 4.14
	Proof of Proposition 4.15
	Proof of Corollary 4.16
	Proof of Corollary 4.17
	Proof of Proposition 4.18
	Proof of Proposition 4.19
	Proof of Theorem 4.20
	Proof of Corollary 5.1
	Posterior Densities

	Vorlage_WP_206_Anhang

