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ITERATIVE REFINEMENT OF THE QZ DECOMPOSITION FOR SOLVING
LINEAR DSGE MODELS

JOHANNES HUBER AND ALEXANDER MEYER-GOHDE

ABSTRACT. The standard approach to solving linear DSGE models is to apply the QZ

method. It is a one-shot algorithm that leaves the researcher with little alternative than

to seek a different algorithm should the result be numerically unsatisfactory. We develop

an iterative implementation of QZ that delivers the standard result as its first iteration

and further refinements at each subsequent iteration. We demonstrate that our algorithm

successful corrects for accuracy losses identified in particular cases of a macro finance

model and does not erroneously attempt to refine sufficiently accurate solutions. JEL

classification codes: C61, C63, E17

Keywords: Numerical accuracy; DSGE; Solution methods

1. INTRODUCTION

The major computational hurdle in the solution of linear dynamic stochastic general

equilibrium (DSGE) models is the solution of the associated matrix quadratic equation -

the current standard in the literature is to use a generalized Schur or QZ decomposition

(Moler and Stewart, 1973; Golub and van Loan, 2013) to solve this equation.1 Implemen-

tations of this algorithm has been provided to the profession as a one-shot tool, requiring

researchers to take it or leave it. This is problematic if the accuracy of the QZ solution is

perhaps lacking. We extend the methodology of solving linear DSGE models with QZ or

generalized Schur decompositions by providing an iterative version that allows users to

improve on a QZ solution with QZ itself.
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2 HUBER AND MEYER-GOHDE

We provide an eigenvalue preserving transformation that reinterprets the companion

linearization of the matrix quadratic as a subspace problem in increments of the solution

or solvent. Beginning at the zero matrix, the first iteration reproduces the standard

QZ approach. Further iterations refine the solution - while theoretically refinements

should not be possible, this is numerically not the case: as Tisseur (2000) shows for the

quadratic eigenvalue problem, QZ’s backward stability is broken by the block structure

that is necessary to maintain the mapping to the underlying matrix quadratic problem.

We assess our iterative QZ implementation in a sets of experiments using the model of

Jermann (1998) that has numerically unstable parameterization nearby to the standard

parameterization. We find that our iterative QZ method successfully terminates when the

solution is accurate enough, as measured by Meyer-Gohde’s (2022) practical forward error

bounds, and overcomes numerically inaccuracies by running a few iterations through

improvement increments.

2. ITERATIVE QZ

The linear, or first-order, approximation of a DSGE model at the steady state can

typically be stated as

0= AE t [yt+1]+Byt +Cyt−1 +Dεt (1)

where the coefficient matrices A, B and C are ny×ny and D is ny×ne, the endogenous

variables yt ∈ Rny are a vector of size ny ; and the vector of ne exogenous shocks are

contained in εt ∈ Rne , where ny and ne are positive integers (ny,ne ∈ N) and εt has a

known mean zero distribution.

The solution to the linearized model (1) is a linear solution in the form,

yt = P yt−1 +Q εt (2)

a recursive solution for yt as a function of its own past, yt−1, and shocks, εt.

Using our linear solution (2), it yields through substitution into (1) - and recognizing

that the expectation E t [εt+1]= 0 is known - the following two equations

0= AP2 +BP +C, 0= (AP +B)Q+D (3)

With the former solution being quadratic with potentially multiple solutions, a selection

criteria has to be used and generally a unique (semi) stable solution P is sought by the

literature, that is a P with all its eigenvalues inside the open unit circle. As Lan and
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Meyer-Gohde (2014) prove the latter can be uniquely solved for Q if such a P can be found,

our focus will be the former, the unilateral quadratic matrix equations (UQME).

2.1. Standard QZ

To enable our interative QZ approach, we will first express the UQME in (3) as a

subspace problem by forming the first companion linearization of the matrix quadratic

problem (Hammarling, Munro, and Tisseur, 2013)

A X =BX M (4)

with

X =
 I

P

 A =
C B

0 I

 , B =
0 −A

I 0

 , M = P.

Clearly, any P satisfying (3) is a solution of (4). Further note that the eigenvalues

of M are a subset of the generalized eigenvalues of the matrix pencil A −λB, i.e.,

eig(M )⊂ eig(A0,B0).

We will assume the conditions for the existence of the unique solvent P are fulfilled,

i.e., Blanchard and Kahn’s (1980) celebrated rank and order conditions, and hence that

there exist a unique solvent P satisfying the UQME in (3) with eigenvalues on or inside

the unit circle and all remaining eigenvalues associated with the UQME (or latent roots

of the UQME, see Meyer-Gohde (2022)) are outside the unit circle.

The problem in (4) is numerically an eigenvalue problem and can thus be solved

using the QZ or generalized Schur decompostion of Moler and Stewart (1973). We will

derive the solution by working directly with the linear algebraic problem instead of

the dynamic model as is usually done to keep the notation simple. The decomposition

provides unitary Q and Z and upper triangular S and T with Q∗BZ = S and Q∗A Z = T,

where ∗ indicates the complex conjugation of Q that delivers its inverse by virtue of it

being a unitary matrix and where the eigenvalues of the matrix pencil PBA (z)=Bz−A ,

ρ(PBA )= ρ(PST )= {
tii/sii, if sii ̸= 0; ∞, if sii = 0; ;, if sii = tii = 0; i = 1, . . . ,2ny

}
,2 can be

ordered arbitrarily to formT11 T12

0 T22

W s

Wu

=
S11 S12

0 S22

W s

Wu

P (5)

2If both sii = tii = 0 for some i, then any z ∈C will satisfy |Bz−A | = 0. This is the mundane singularity

of King and Watson (1998) that reflects a poorly specified model, e.g., a repeated equation, and the definition

in the text can be interpreted to ruling out such misspecifications by limiting the analysis to regular pencils.
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where Z∗
[
I P ′

]′
=

[
W s′ Wu′

]′
. We assume the decomposition is ordered so that the

unstable eigenvalues are in the lower right blocks of S and T (hence S22 and T22),

wherefor the lower block equation gives

T22Wu = S22WuP ⇒Wu = T−1
22 S22WuP. (6)

Consequently, the eigenvalues of T−1
22 S22 are inside the unit circle and P is a (semi) stable

solvent, so that we can iterate

Wu = T−1
22 S22WuP = (

T−1
22 S22

)2 WuP2 = (
T−1

22 S22
) j WuP j →

j→∞
0 (7)

for a unit root stable P. Using the definition of Wu we receive

0=Wu = Z∗
21 +Z∗

22P ⇒ P =−Z∗
22

−1Z∗
21 = Z21Z−1

11 (8)

The equivalence Z∗
22

−1Z∗
21 = −Z21Z−1

11 follows from the properties of unitary matrices

and Z21Z−1
11 =Q11S−1

11 T11Q−1
11 from the first block rows of A and B in (4) and the upper

triangularity of S and T. From Q11S−1
11 T11Q−1

11 , it follows that the recursion in P is indeed

stable from the ordering of the eigenvalues above, i.e. the eigenvalues of the upper left

block of the generalized Schur decomposition, det (S11λ−T11) = 0, are inside the unit

circle. So the QZ decomposition applied to our matric pencil will recover the unique (semi)

stable solvent P if it exists consistent with our assumption its existence.

2.2. Iterative QZ

While the QZ decomposition analytically recovers the unique solvent, numerically it is

subject to finite precision. Hence, the decomposition delivers P̂ = P +O (ϵ) which differs

from the true solution P via numerical errors O (ϵ). If the solution P̂ is unsatisfactory,

that is, if the errors, O (ϵ), are too large, we would like an alternative to abandoning the

QZ solution and having to find an alternate solution. That is, we would like to improve

on P̂ using QZ. To this end we will derive an interative QZ approach that takes this

approximate solution as the initialization or output from the previous iteration Pk−1.

Using this Pk−1, we define a matrix to transform the original, one-shot problem

Uk ≡
 I 0

Pk−1 I

 , U−1
k ≡

 I 0

−Pk−1 I

 (9)
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We note that Uk is an eigenvalue preserving transform3 with

Ak ≡AUk, Bk ≡BUk (10)

giving

A X =BX M ⇒AUkU−1
k X =BUkU−1

k X M ⇒AkX̂k =BkX̂kM . (11)

where X̂k defines the potential improvement that is key to the iterative nature of our

approach

X̂k ≡U−1
k X =

 I 0

−Pk−1 I

 I

P

=
 I

P −Pk−1

 (12)

and thus (with ∆Pk ≡ P −Pk−1)

Ak

 I

∆Pk

=Bk

 I

∆Pk

M (13)

and

Ak =
C+BPk−1 B

Pk−1 I

 , Bk =
−APk−1 −A

I 0

 (14)

As above with the pencil A , B we can apply the QZ decomposition to the

pencil defined by Ak, Bk. The decomposition provides unitary Qk and Zk and

upper triangular Sk and Tk with Q∗
kBkZk = Sk and Q∗

kAkZk = Tk, where the

eigenvalues of the matrix pencil PBkAk (z) = Bkz − Ak, ρ(PBkAk ) = ρ(PSkTk ) ={
tk,ii/sk,ii, if sk,ii ̸= 0; ∞, if sk,ii = 0; ;, if sk,ii = tk,ii = 0; i = 1, . . . ,2ny

}
. From the eigen-

value preserving transformation behind Ak and Bk, follows that ρ(PBkAk )= ρ(PBA ). And

analogous to (5) we receiveTk,11 Tk,12

0 Tk,22

W s
k

Wu
k

=
Sk,11 Sk,12

0 Sk,22

W s
k

Wu
k

P (15)

where Z∗
k

[
I ∆P ′

k

]′
=

[
W s

k
′ Wu

k
′
]′

. We assume the decomposition is ordered so that the

unstable eigenvalues are in the lower right blocks of Sk and Tk (hence Sk,22 and Tk,22),

wherefor the lower block equation gives

Tk,22Wu
k = Sk,22Wu

k P ⇒Wu
k = T−1

k,22Sk,22Wu
k P. (16)

3See the appendix for details.
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Since the eigenvalues of T−1
k,22Sk,22 are inside the unit circle and P is the (semi) stable

(but unknown) solvent or M we can iterate

Wu
k = T−1

k,22Sk,22Wu
k P =

(
T−1

k,22Sk,22

)2
Wu

k P2 =
(
T−1

k,22Sk,22

) j
Wu

k P j →
j→∞

0. (17)

Using the definition of Wu
k we receive

0=Wu
k = Z∗

k,21 +Z∗
k,22∆Pk ⇒∆Pk =−Z∗

k,22
−1Z∗

k,21 = Zk,21Z−1
k,11. (18)

Due to finite precision arithmetic, the algorithm will compute ∆P̂k =∆Pk +Ok(ϵ) which

is only an approximation of the true potential improvement ∆Pk subject to numerical

errors Ok(ϵ). Therefore, the updated approximation of P yields

Pk = Pk−1 +∆P̂k, (19)

We initialize with P−1 = 0, such that the P0 recovered above is the standard QZ solution

derived by Klein (2000), Sims (2001), and Uhlig (1999) and is the standard method in

Dynare.4 We thusly interpret Pk for k > 0 as iterative QZ improvements and define the

following iterative QZ algorithm

Algorithm 1: Iterative QZ Algorithm

Given: A, B, C, and a convergence criterion ϵ

Set P−1 = 0

While criterion(∆Pk) > ϵ do

Define Ak =
C+BPk−1 B

Pk−1 I

 and Bk =
−APk−1 −A

I 0


Apply the QZ algorithm Q∗

kBkZk = Sk and Q∗
kAkZk = Tk, arranged with the

unstable eigenvalues are in the lower right blocks of Sk and Tk

Set ∆Pk = Zk,21Z−1
k,11

Set Pk = Pk−1 +∆Pk

Advance k = k+1

end

Return: Pk

4See the appendix for the details of implementing the algorithm in Dynare in accordance with its

classification of variables.
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Ideally we would solve all problems exactly. With finite precision, the best we can hope

for is to solve a problem within machine precision, ϵ. With each calculation, we invariably

inherit potential rounding or floating point errors that limit the possible accuracy of our

results. Furthermore, these errors are magnified in ill-conditioned problems. Accordingly,

we follow Higham (2002, ch. 3) and calculate a target threshold for the solution of the

matrix quadratic based on the number of floating point calculations. Adding C and

AP2 +BP involves ny2 operations and adding AP2 and BP another ny2, each with a

potential finite precision error εMP . The inner product x′y for vectors of length ny can

be bounded by γ(ny) ≡ nyεMP
1−nyεMP

accordingly the product of B and P has floating point

errors bounded by ny2γ(ny) and that of A, P, and P by
(
ny2γ(ny)

)2. This gives in

total ny2 [
εMP +εMPγ(ny)

(
εMP +εMPγ(ny)

)]
which following Higham (2002, Lemma 3.3)

using the rules of running error analysis gives n2
y
(
εMP +γ(ny +2)+γ(2∗ny +2)

)
. For

ill conditioned problems, these error can be potentiated into errors of the solution via

the condition number Ψ (see Higham (2002) in general and Meyer-Gohde (2022) for the

specific DSGE matrix quadratic problem). Combining, the realistic level of accuracy for a

matrix quadratic problem with a given conditioning and dimension is

ϵ=Ψ∗n2
y
(
εMP +γ(ny +2)+γ(2∗ny +2)

)
(20)

which we take as our convergence criterion ϵ.

We expect our iterative QZ algorithm to perform favorably in terms of improving the

accuracy of a solution for two reasons. Firstly, the algorithm attempts to set ∆Pk to close

the gap between the current initialization Pk−1 and the solution to the matrix quadratic

P. That is, it solves for ∆Pk such that Pk = P. Of course, it is limited like the original

QZ (i.e., the first iteration of our method) by finite precision arithmetic. However, the

addition of the terms Pk−1 in the lower left of Ak and −APk−1 in the upper left of Bk

removes two of the five zero/identity blocks in the original formulation of A and B.

This is significant as the breakdown of the backward stability of the QZ algorithm for

solving the matrix quadratic problem as identified by Tisseur (2000) is caused by the large

number of mandatory zeros and ones to maintain the mapping of the matrix quadratic to

a generalized eigenvalue problem, which, as Meyer-Gohde (2022) shows, leads to QZ based

algorithms in the DSGE literature being more prone to numerical instability than other,

less common methods. We will now confirm that with the reduction of these mandatory

zeros and ones by 40%, our iterative QZ is able to overcome numerical instability as

identified in a specific macro-finance example by Meyer-Gohde (2022).
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3. A MACRO FINANCE: APPLICATION

We run through a set of experiments to assess the iterative QZ in the model of Jermann

(1998). We test how our algorithm performs under both conditions when the standard

QZ works well and when it does not - namely Meyer-Gohde’s (2022) parameterizations

and formulations of Jermann’s (1998) macro finance model. This model is attractive as

it successfully replicates key finance variables, such as the average equity premium, in

a production based asset pricing framework - that is, with endogenous production and

consumption in a compact parsimonious DSGE model. Furthermore, Heiberger, Klarl,

and Maußner (2017) analyze a similar model, with habit formation in labor along with

consumption, for the numerical accuracy of linear DSGE solutions.

Jermann’s (1998) model of habit formation and adjustment costs gives agents a strong

motive to care about volatile consumption streams but inhibits their ability to respond

which drive the success in matching the macro and finance moments. The habit stock, X t,

is internal as households internalize the effect of consumption today on the habit they

will face tomorrow, yielding marginal utility from consumption, λt, in the pricing kernel

mt+1 ≡βλt+1/λt of

λt ≡ ∂
(
u (ct, X t)+βE t [u (ct+1, X t+1)]

)
/∂ct (21)

If habit formation is external, this is simply uc (ct, X t), here with the habit internalized it

is a function of the previous period’s consumption, X t ≡ X (ct−1), and is given by

λt = uc (ct, X (ct−1))+βE t [uX (ct+1, X (ct)) X c(ct)]

We assume u (·t)= (·t)1−τ / (1−τ) with curvature τ and habit ·t = ct −bct−1 with the degree

of habit formation b. Households’ ability to reduce the volatility of consumption streams

as desired is impeded by adjustment costs in capital accumulation

kt = (1−δ/kt−1)kt−1

where the capital adjustment cost function is φ (i t/kt−1)= b̃
1−ξ (i t/kt−1)1−ξ+ c̃ with b̃ and c̃

set such that the steady state matches the case without adjustment costs and 1/ξ is the

elasticity of the investment-capital ratio with respect to Tobin’s q.

We examine two parameterizations that can be found in table 1. The baseline calibration

is the calibration given by Jermann (1998) slightly adjusted to match the his empirical

moments, the average risk premium, the risk free rate and the standard deviations of

output, investment and consumption growth, in the most accurate linear method exactly.
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TABLE 1. Calibrations for Jermann’s (1998) DSGE Macro-Finance Model

τ b β∗ =βa1−τ ξ σZ

Baseline 7.92 0.74 0.99 3.75 0.999%

Alternative 29.96 0.66 0.94 0.76 0.997%

α a δ ρZ Nss SSad jc

Common 0.36 0.005 0.025 0.99 1 1

The alternative parameterization is merely a near-by calibration with an increase in the

curvature of the utility kernel - increasing households’ unconditional sensitivity to volatile

consumption streams - partially attenuated by a reduction in degree of habit formation but

an significant increase in the elasticity in the adjustment costs - making them, however,

more able to respond to this volatility. Just as different methods that are theoretically

identical can have different numerical consequences, so too can different formulations of

a model that are theoretically identical have different numerical consequences. Consider

the application of the Lucas asset pricing equation to pricing economic capital

1= E t

[
em̂t+1+R̂t+1

]
(22)

or equivalently

1=βE t

[
e−τa+R̂t+1

µt+1

µt

]
, as em̂t =βe−τa µt

µt−1
(23)

and µt is deterministically detrended λt from (21) above. In the results above, the

formulation (23) was used, now we replace (23) with (22). This theoretically makes no

difference, but numerically changes the problem significantly (Meyer-Gohde, 2022). To see

this intuitively, notice that previously, there were entries in the B matrix (associated with

contemporaneous variables) as well as in the A matrix (associated with future variables)

in the row associated with this equation. Now with (22), there are only entries in the A

matrix (associated with future variables) in the row associated with this equation.

Table 2 contains the results for both parameterizations and the reformulation of the

Euler equation. The data row repeats the moments in post-war US data reported by

Jermann (1998) in his study. The first set of results reports the baseline calibration and

model definition. We see that our iterative QZ algorithm terminates after the initial

iteration and produces the same results as Dynare’s QZ and the best (in terms of forward

error which is Dynare’s cyclic reduction (CR) method) performing algorithm for this

constellation of Jermann’s (1998) model as found by Meyer-Gohde (2022).5 Thus, the
5Note that the forward errors for our iterative QZ and Dynare’s QZ differ by roughly an order of

magnitude. For the experiments with Jermann’s (1998) model, we implement the naïve version of our
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E [rp] E
[
R f

t

]
std (log yt) std (log ct) Cond. Num. Forward Error

Data 6.18 0.8 0.01 0.51 – –

Baseline Calibration

Iterative QZ
6.18 0.8 0.01 0.51 9.4e+05 1.12e-12

(1 iteration)

Dynare QZ 6.18 0.8 0.01 0.51 9.4e+05 2.06e-13

In Meyer-Gohde (2022)
6.18 0.8 0.01 0.51 9.4e+05 2.23e-15

(Best: Dynare CR)

Alternative Calibration

Iterative QZ
6.23 0.824 0.01 0.519 1.06e+05 3.07e-08

(2 iterations)

Dynare QZ 6.09 0.696 0.01 0.584 1.22e+05 1.83e-01

In Meyer-Gohde (2022)
6.23 0.824 0.01 0.519 1.06e+05 1.77e-15

(Best: Binder-Peseran)

Alternative Calibration, Alternate Equations

Iterative QZ
6.23 0.824 0.01 0.519 1.05e+05 7.19e-06

(8 iterations)

Dynare QZ 6.29 -0.326 0.01 0.531 7.65e+04 1.16e+01

In Meyer-Gohde (2022)
6.23 0.824 0.01 0.519 1.05e+05 1.72e-15

(Best: AIM)

TABLE 2. Jermann (1998) Moments and Errors

expected level of accuracy is returned by the standard QZ algorithm and the macro

finance results in terms of moments of economic variables are identical in the QZ and

the most accurate algorithm. The next set of results is for the alternative calibration

with higher utility curvature counterbalanced by a lower degree of habit formation and

higher elasticity of adjustment costs. Our iterative QZ algorithm does not terminate

after the initial iteration and chooses instead to run a second iteration. Compared with

the standard one-shot implementation of QZ there is a gain of forward error accuracy of

algorithm as laid out above. Dynare’s implementation reduces the dimensionality of the QZ problem

by grouping variables and structuring the matrix quadratic according to the classification of “static”,

“purely forward”, “purely backward looking”, and “mixed” variables, see Villemot (2011). The analogous

dimension reduction for our iterative QZ algorithm is detailed in the appendix. We choose to report the

naïve results here, particularly for the baseline calibration, to highlight the importance of the actual

numerical implementation of QZ that leads to a one order of magnitude improvement in the forward error.
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roughly seven degrees of magnitude and our iterative QZ successfully recovers the macro

finance moments produced by the most accurate method reported in Meyer-Gohde (2022).

The last set of results with both the alternative calibration and formulation of the Euler

equations presents a formidable challenge - many methods in Meyer-Gohde (2022) failed

to produce a solution at all and Dynare’s QZ even predicts a negative risk-free rate for

this case. With 8 iterations, our iterative QZ has to put in extra effort with this particular

problem to achieve the target forward error. Upon convergence, the algorithm again

is roughly seven degrees of magnitude more accurate than Dynare’s QZ and produces

moments that match those of the most accurate method for this constellation. Thus,

for the model of Jermann (1998), we conclude that our method successfully identifies

situations where the standard QZ method is sufficient and rectifies those that are not.

In sum, our experiments clearly demonstrate the utility and reliability of our algorithm

- iterating over the standard QZ results when they are not sufficiently accurate and

refraining from iterating when the are. The only additional costs over the standard

implementation of QZ are the calculations of conditioning numbers and forward errors for

each model, which is standard numerical practice to ensure numerical stability.

4. CONCLUSION

We have introduced and developed an iterative implementation of the QZ algorithm for

solving linear DSGE models as alternatives to the one-shot QZ methods in the literature.

The first iteration initialized on the zero matrix returns the standard QZ output, further

iterations provide improvement increments and we continue until the solution achieves

the accuracy permitted by Meyer-Gohde’s (2022) forward error bounds.

In a set of experiments using Jermann’s (1998) macro finance model, we find that

our proposed algorithm returns the standard QZ output should it already be accurate

enough and otherwise runs a few iterations until this accuracy is achieved. Thus we

have provided an entirely QZ based method to improve the accuracy of solutions of linear

DSGE models alongside the alternative iterative methods developed in Meyer-Gohde

and Saecker (2022), Meyer-Gohde (2023), Binder and Meyer-Gohde (2024), and Huber,

Meyer-Gohde, and Saecker (2023). As these studies already demonstrated, there is likely

no single one-size-fits-all algorithm and our iterative QZ based algorithm should be

considered a complement of the different methods for solving linear DSGE models.
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APPENDIX

4.1. Eigenvalue Preservation

The eigenvalue preservation can be seen by comparison. The eigenvalues of the pencil defined by A , B

are given by λ ∈C such that

0= det(A −λB)⇒ 0= det
(
Aλ2 +Bλ+C

)
(A1)

The eigenvalues of the pencil defined by Ak, Bk are given by µ ∈C such that

0= det
(
Ak −µBk

)
(A2)

= det

C+BPk−1 B

Pk−1 I

−µ
−APk−1 −A

I 0

 (A3)

= det

APk−1µ+C+BPk−1 Aµ+B

−Iµ+Pk−1 I

 (A4)

(A5)

As −Iµ+Pk−1 and I commute

0= det
(
Ak −µBk

)
(A6)

= det
[(

APk−1µ+C+BPk−1
)
I − (

Aµ+B
)(

Pk−1 − Iµ
)]

(A7)

= det
[
APk−1µ+C+BPk−1 − AµPk−1 −BPk−1 + Aµ2 +Bµ

]
(A8)

= det
(
C+ Aµ2 +Bµ

)
(A9)

Inspection shows that λ and µ are identical.

4.2. Detailed Dynare Topology

Here we summarize the details in the matrix quadratic that follows from the typology of variables from

Dynare as laid out in Villemot (2011). See Meyer-Gohde and Saecker (2022) for additional details.

Subdividing the system of equations in accordance with the QR decomposition yields



ns n−− nm n++

ns 0 0

n−− 0 0

nm 0 0

n++ 0 0

Ă+
ns×n+

Ã+
nd×n+


︸ ︷︷ ︸

A
n×n

P2
n×n

+



ns n−− nm n++

ns Ă0s

n−− 0

nm 0

n++ 0

Ă0d

ns×nd

Ã0

nd×nd


︸ ︷︷ ︸

B
n×n

P
n×n

+



ns n−− nm n++

ns 0 0

n−− 0 0

nm 0 0

n++ 0 0

Ă−
ns×n−

Ã−
nd×n−


︸ ︷︷ ︸

C
n×n

= 0
n×n

where nd is the number of dynamic variables, the sum of number of purely backward-looking, n−−, mixed

nm, and purely forward-looking variables, n++. The number of forward-looking variables, n+, is the sum of

the number of mixed, nm, and purely forward-looking variables, n++, and the number of backward-looking

variables, n−, is the sum of the number of purely backward-looking, n−− and mixed variables nm. Hence,

the number of endogenous variables is the sum of the number of static, ns, and dynamic variables, nd , or
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the sum of the number of static, ns, purely backward-looking, n−−, mixed nm, and purely forward-looking

variables, n++. The dimensions satisfy the following

nd = n−−+nm +n++, n+ = nm +n++, n− = n−−+nm, n = ns +nd = ns +n−−+nm +n++

The transition matrix, P, from (2) that solves the matrix equation (3) can be subdivided in accordance to

Dynare’s typology as

P=



ns n−− nm n++

ns Ps,s Ps,−− Ps,m Ps,++

n−− P−−,s P−−,−− P−−,m P−−,++

nm Pm,s Pm,−− Pm,m Pm,++

n++ P++,s P++,−− P++,m P++,++

=
[ ns n−− nm n++

n P•,s P•,−− P•,m P•,++
]
=



n

ns Ps,•

n−− P−−,•

nm Pm,•

n++ P++,•


The matrix quadratic can be expressed as

M( P
n×n

)= A
n×n

P2 + B
n×n

P+ C
n×n

= (
AP+B

)︸ ︷︷ ︸
≡G

P+C

For a solvent P of the matrix quadratic, taking the structure of C from the Dynare typology above into

account yields

M(P)= 0=GP+C

=G
[ ns n−− nm n++

n P•,s P•,−− P•,m P•,++
]
+



ns n−− nm n++

ns 0 0

n−− 0 0

nm 0 0

n++ 0 0

Ă−
ns×n−

Ã−
nd×n−


Following Meyer-Gohde and Saecker (2022), who apply corollary 4.5 of Lan and Meyer-Gohde (2014),

if P is the unique solvent of M(P) stable with respect to the closed unit circle, G has full rank and

hence the columns of P associated with nonzero columns in C, the static and forward-looking vari-

ables are zero � P•,s = 0
n×ns

, P•,++ = 0
n×n++, whence P is P =

[ ns n−− nm n++

n 0 P•,−− P•,m 0
]

and

M(P)=
[

0
n×ns

M(P)−−
n×n−− M(P)m

n×nm
0

n×n++

]
. Consequentially, the first ns rows of the matrix quadratic, taking



n

n−− P−−,•

nm Pm,•

n++ P++,•

 as given, yield
[ n−− nm

ns Ps,−− Ps,m

]
as

[ n−− nm

ns Ps,−− Ps,m

]
=−

[
Ă0s

ns×ns

]−1

 Ă+
ns×n+


n−− nm

nm Pm,−− Pm,m

n++ P++,−− P++,m

 
n−− nm

n−− P−−,−− P−−,m

nm Pm,−− Pm,m


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+ Ă0d

ns×nd



n−− nm

n−− P−−,−− P−−,m

nm Pm,−− Pm,m

n++ P++,−− P++,m

+ Ă−
ns×n−



and the first ns rows of P are Ps,•
ns×n

=
[ ns n−− nm n++

ns 0 Ps,−− Ps,m 0
]
.

The last nd columns and rows of P solve the reduced matrix quadratic equation



n−− nm n++

n−− 0

nm 0

n++ 0

Ã+
nd×n+




n−− nm n++

n−− P−−,−− P−−,m P−−,++

nm Pm,−− Pm,m Pm,++

n++ P++,−− P++,m P++,++


︸ ︷︷ ︸

P̃
nd×nd

· P̃
nd×nd

+ Ã0

nd×nd
P̃

nd×nd

+



n−− nm n++

n−− 0

nm 0

n++ 0

Ã−
nd×n−



=M̃(P̃)
nd×nd

=
[ n−− nm n++

nd M̃(P̃)−− M̃(P̃)m 0
]
= 0

nd×nd

Recalling that P•,++ = 0
n×n++, P̃ can be reduced and four submatrices P−−, P−, P+ and P++ defined via

P̃=



n−− nm n++

n−− P−−,−− P−−,m P−−,++

nm Pm,−− Pm,m Pm,++

n++ P++,−− P++,m P++,++

=



n−− nm n++

n−− P−−,−− P−−,m 0

nm Pm,−− Pm,m 0

n++ P++,−− P++,m 0

≡



n−− nm n++

n−− 0

nm 0

n++ 0

P−−
n−−×n−

P+
n+×n−

≡



n−− nm n++

n−− 0

nm 0

n++ 0

P−
n−×n−

P++
n++×n−



where P−−
n−−×n− ≡

[ n−− nm

n−− P−−,−− P−−,m

]
, P−

n−×n− ≡


n−− nm

nm Pm,−− Pm,m

n−− P−−,−− P−−,m

, P+
n+×n− ≡


n−− nm

nm Pm,−− Pm,m

n++ P++,−− P++,m

,

and P++
n++×n− ≡

[ n−− nm

n++ P++,−− P++,m

]
.

We can now write the matrix quadratic as



n−− nm n++

n−− 0

nm 0

n++ 0

Ã+
nd×n+




n−− nm n++

n−− 0

nm 0

n++ 0

P−−
n−−×n−

P+
n+×n−




n−− nm n++

n−− 0

nm 0

n++ 0

P−
n−×n−

P++
n++×n−

+ Ã0

nd×nd



n−− nm n++

n−− P−−,−− P−−,m 0

nm Pm,−− Pm,m 0

n++ P++,−− P++,m 0


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+



n−− nm n++

n−− 0

nm 0

n++ 0

Ã−
nd×n−

= M̃(P̃)
nd×nd

=
[ n−− nm n++

nd M̃(P̃)−− M̃(P̃)m 0
]
= 0

nd×nd

Multiplying this out and keeping only the generically nonzero columns gives

Ã+
nd×n+

P+
n+×n− P−

n−×n−+ Ã0+
nd×n+

P+
n+×n−+ Ã0−

nd×n−
P−

n−×n−+ Ã−
nd×n−

= 0
nd×n−

(A10)

where

Ã0

nd×nd
=

[n−− nm n++

nd 0Ã0−
nd×n−

]
+

[n−− nm n++

nd 0 Ã0+
nd×n+

]
As stated by Villemot (2011), the allocation of the middle columns (the nm ones associated with “mixed”

variables) between Ã0− and Ã0+ is not unique.

The companion linearization of (A10) analogous to the main text is


n− n+

nd Ã−
nd×n−

Ã0+
nd×n+

nm 0
nm×n− I+

nm×n+




n−

n− I
n−×n−

n+ P+
n+×n−

=


n− n+

nd − Ã0−
nd×n−

− Ã+
nd×n+

nm I−
nm×n− 0

nm×n+




n−

n− I
n−×n−

n+ P+
n+×n−

 P−
n−×n− (A11)

where I+
nm×n+ =

[ nm n++

nm I
nm×nm

0
nm×n++

]
and I−

nm×n− =
[ n−− nm

nm 0
nm×n−− I

nm×nm

]
are selection matrices.

This is (4), note that nd +nm = n−+n+

A
(nd+nm)×(n−+n+)

X
(n−+n+)×n− = B

(nd+nm)×(n−+n+)
X

(n−+n+)×n− M
(n−+n+)×n− (A12)

now with

X =


n−

n− I
n−×n−

n+ P+
n+×n−

 A =


n− n+

nd Ã−
nd×n−

Ã0+
nd×n+

nm 0
nm×n− I+

nm×n+

, B =


n− n+

nd − Ã0−
nd×n−

− Ã+
nd×n+

nm I−
nm×n− 0

nm×n+

, M = P−
n−×n−

Now we can begin with an approximate solution P+
k−1

n+×n−
and define the eigenvalue preserving transforma-

tion

Uk ≡


n− n+

n− I
n−×n− 0

n−×n+

n+ P+
k−1

n+×n−
I

n+×n+

, U−1
k ≡


n− n+

n− I
n−×n− 0

n−×n+

n+ −P+
k−1

n+×n−
I

n+×n+

 (A13)

giving

AkX̂k =BkX̂kM (A14)
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or

Ak


n−

n− I
n−×n−

n+ ∆P+
k

n+×n−

=Bk


n−

n− I
n−×n−

n+ ∆P+
k

n+×n−

M (A15)

as

X̂k ≡U−1
k Xk =


n− n+

n− I
n−×n− 0

n−×n+

n+ −P+
k−1

n+×n−
I

n+×n+




n−

n− I
n−×n−

n+ P+
k

n+×n−

=


n−

n− I
n−×n−

n+ P+
k

n+×n−
− P+

k−1
n+×n−


and

Ak ≡AUk =


n− n+

nd Ã−
nd×n−

+ Ã0+
nd×n+

P+
k−1

n+×n−
Ã0+

nd×n+

nm I+
nm×n+ P+

k−1
n+×n−

I+
nm×n+

, Bk ≡BUk =


n− n+

nd − Ã0−
nd×n−

− Ã+
nd×n+

P+
k−1

n+×n−
− Ã+

nd×n+

nm I−
nm×n− 0

nm×n+


(A16)

As in the main text, we can apply the QZ decomposition to the pencil defined by Ak, Bk, delivering

unitary Qk
(nd+nm)×(n−+n+)

and Zk
(nd+nm)×(n−+n+)

and upper triangular Sk
(nd+nm)×(n−+n+)

and Tk
(nd+nm)×(n−+n+)

with

Q∗
kBkZk = Sk and Q∗

kAkZk = Tk


n− n+

n− Tk,11
n−×n−

Tk,12
n−×n+

n+ 0
n+×n− Tk,22

n+×n+




n−

n− ws
k

n−×n−

n+ wu
k

n+×n−

=


n− n+

n− Sk,11
n−×n−

Sk,12
n−×n+

n+ 0
n+×n− Sk,22

n+×n+




n−

n− ws
k

n−×n−

n+ wu
k

n+×n−

 P−
n−×n− (A17)

where

Z∗
k

(nd+nm)×(n−+n+)


n−

n− I
n−×n−

n+ ∆P+
k

n+×n−

=


n−

n− ws
k

n−×n−

n+ wu
k

n+×n−

⇔


n−

n− I
n−×n−

n+ ∆P+
k

n+×n−

= Zk
(nd+nm)×(n−+n+)


n−

n− ws
k

n−×n−

n+ wu
k

n+×n−

 (A18)

and

Z∗
k =


n− n+

n− Z∗
k,11

n−×n−
Z∗

k,12
n−×n+

n+ Z∗
k,21

n+×n−
Z∗

k,22
n+×n+

, Zk =


n− n+

n− Zk,11
n−×n−

Zk,12
n−×n+

n+ Zk,21
n+×n−

Zk,22
n+×n+

 (A19)

We assume the decomposition is ordered so that the unstable eigenvalues are in the lower right blocks of

Sk and Tk (hence Sk,22 and Tk,22), whence the lower block equation gives

Tk,22wu
k = Sk,22wu

kP− ⇒ wu
k = T−1

k,22Sk,22wu
kP− = 0 (A20)
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as the eigenvalues of T−1
k,22Sk,22 are inside the unit circle and P− is the (semi) stable (but unknown) solvent

or M - see the main text. Using the definitions of ws
k and wu

k and inserting wu
k = 0 gives


n−

n− I
n−×n−

n+ ∆P+
k

n+×n−

=


n− n+

n− Zk,11
n−×n−

Zk,12
n−×n+

n+ Zk,21
n+×n−

Zk,22
n+×n+




n−

n− ws
k

n−×n−

n+ 0
n+×n−

 (A21)

and


n− n+

n− Z∗
k,11

n−×n−
Z∗

k,12
n−×n+

n+ Z∗
k,21

n+×n−
Z∗

k,22
n+×n+




n−

n− I
n−×n−

n+ ∆P+
k

n+×n−

=


n−

n− ws
k

n−×n−

n+ 0
n+×n−

 (A22)

the second block equations (noting that the first block of the first definition implies ws
k = Z−1

k,11)

0= wu
k = Z∗

k,21 +Z∗
k,22∆P+

k ⇒∆P+
k =−Z∗

k,22
−1Z∗

k,21 = Zk,21Z−1
k,11 (A23)

Using the definition of ∆P+
k , this defines an update of P+

k−1 given by

P+
k =P+

k−1 +∆P+
k (A24)

Upon convergence of P+
k , P− then follows from ws

k = Z−1
k,11 and wu

k = 0 inserted into the pencil


n− n+

n− Tk,11
n−×n−

Tk,12
n−×n+

n+ 0
n+×n− Tk,22

n+×n+




n−

n− Z−1
k,11

n−×n−

n+ 0
n+×n−

=


n− n+

n− Sk,11
n−×n−

Sk,12
n−×n+

n+ 0
n+×n− Sk,22

n+×n+




n−

n− Z−1
k,11

n−×n−

n+ 0
n+×n−

 P−
n−×n− (A25)

with the first block equation being

Tk,11Z−1
k,11 = Sk,11Z−1

k,11P− (A26)

the eigenvalue assumptions ensure that Sk,11 is invertible, hence,

P− = Zk,11S−1
k,11Tk,11Z−1

k,11 (A27)

Finally, the (generically) non zero elements of the first ns rows of P (Ps,•
ns×n

=

[ ns n−− nm n++

ns 0 Ps,−− Ps,m 0
]
) solve

[ n−− nm

ns Ps,−− Ps,m

]
=−

[
Ă0s

ns×ns

]−1


Ă+

ns×n+P+
k P−+ Ă0d

ns×nd



n−− nm

n−− P−−,−− P−−,m

nm Pm,−− Pm,m

n++ P++,−− P++,m

+ Ă−
ns×n−


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where from above



n−− nm

n−− P−−,−− P−−,m

nm Pm,−− Pm,m

n++ P++,−− P++,m

=



n−− nm

n−−

nm

n++

P−−
n−−×n−

P+
n+×n−

≡



n−− nm

n−−

nm

n++

P−
n−×n−

P++
n++×n−


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